Physics Club: Nathalie de Leon, Princeton University, “Engineering new solid state quantum systems” (Online)

Event time: 
Monday, April 6, 2020 - 3:30pm to 4:30pm
Location: 
other () See map
217 Prospect Street
New Haven, CT 06511
Event description: 

Engineering coherent systems is a central goal of quantum science and quantum information processing. Point defects in diamond known as color centers are a promising physical platform. As atom-like systems, they can exhibit excellent spin coherence and can be manipulated with light. As solid-state defects, they can be produced at high densities and incorporated into scalable devices. Diamond is a uniquely excellent host: it has a large band gap, can be synthesized with sub-ppb impurity concentrations, and can be isotopically purified to eliminate magnetic noise from nuclear spins. Specifically, the nitrogen vacancy (NV) center has been used to demonstrate basic building blocks of quantum networks and quantum computers, and has been demonstrated to be a highly sensitive, non-invasive magnetic probe capable of resolving the magnetic field of a single electron spin with nanometer spatial resolution. However, realizing the full potential of these systems requires the ability to both understand and manipulate diamond as a material. I will present two recent results that demonstrate how carefully tailoring the diamond host can open new opportunities in quantum science.
First, currently-known color centers either exhibit long spin coherence times or efficient, coherent optical transitions, but not both. We have developed new methods to control the diamond Fermi level in order to stabilize a new color center, the neutral charge state of the silicon vacancy (SiV) center. This center exhibits both the excellent optical properties of the negatively charged SiV center and the long spin coherence times of the NV center, making it a promising candidate for applications as a single atom quantum memory for long distance quantum communication. Our approach for systematically engineering new color centers in diamond is generalizable to a broader search for quantum defects in many material systems. I will also describe our recent efforts to develop a materials discovery pipeline for rapid screening of new host materials and new defects, including nuclear-spin-free host materials for Er3+, a promising system for quantum networks.
Second, color centers placed close to the diamond surface can have strong interactions with molecules and materials external to the diamond, which makes them promising for nanoscale sensing and imaging. However, uncontrolled surface termination and contamination can degrade the color center properties and give rise to noise that obscures the signal of interest. I will describe our recent efforts to stabilize shallow NV centers within 5 nm of the surface using new surface processing and termination techniques . Specifically, we are able to demonstrate reversible and reproducible control over the top layer of atoms. These highly coherent, shallow NV centers will provide a platform for sensing and imaging down to the scale of single atoms.
In fact, many platforms for quantum technologies are limited by noise and loss arising from uncontrolled defects at surfaces and interfaces, including superconducting qubits, trapped ions, and semiconductor quantum dots. Our approach for correlating surface spectroscopy techniques with single qubit measurements to realize directed improvements is generally applicable to many systems, and I will describe our recent efforts to tackle noise and microwave losses in superconducting qubits.
Host: Steven Girvin