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Experimental Quantum Science: Systems

Traditional solid state materials

Solid state qubits (SC qubits, Majorana wires, NV centers …)

Cold atomic systems (neutral atoms, ions, molecules …)

Photonic/phononic systems (cavities, nanophotonics,…)  



Quantum Science: Goals

1) Quantum computing

2) Quantum simulation 
(quantum many-body physics)

3) Quantum metrology
(use quantum states/systems for precision measurement)

4) Quantum networks

Key ingredient: Large-scale entanglement

Goal: Outperform classical counterparts



‘Entanglement challenge’
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1. Entanglement Growth vs Error Rate

2. Scalability vs Controllability

3. Benchmarking

Can we address these challenges with tweezer trapped atoms?



Outline
A) Intro to tweezer arrays and Rydberg 
interactions

B) Single & two-qubit results, tweezer clocks

C) Benchmarking from 
‘random state ensembles

D) Quantum vs classical comparison for 
large-scale entangled states with N=60
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Fig. 1 | Random pure state ensembles from
Hamiltonian dynamics. a, A thought experiment,
consisting of a programmable device producing arbitrary
quantum states | ji through unitary operations Uj , where j

is a program setting. b, Repeatedly applying explicitly
randomized unitary evolution to an initial state | 0i

produces an ensemble of pure quantum states | ji (blue
arrows) which is distributed close-to uniformly over the
Hilbert space, H (grey sphere), a random state ensemble. c,
Here we demonstrate a new approach to creating random
state ensembles based on only a single instance of
time-independent Hamiltonian evolution. An initial product
state evolves under a Hamiltonian, Ĥ, before site-resolved
projective measurement in the computational basis {|0i,
|1i}. We bipartition the system into two subsystems A and
B of length LA and LB , respectively, and analyze the
conditional measurement outcomes in subsystem A, zA,
given a specific result zB from the complement B. These
outcomes are described by the projected ensemble, a pure
state ensemble in A, {| A(zB)i}, realized through
measurement of B. d, As an example, when LA = 1,
conditional single-qubit quantum states | A(zB)i are
visualized on a Bloch sphere for all possible zB bitstrings. e,
Numerical simulations of our experimental system show that
the distribution of the conditional pure state ensemble in A

changes during evolution into a close-to random form, with
selected states highlighted to demonstrate their late-time
divergence despite similar initial conditions.

of the total system state as

| i =
X

zB

p
p(zB)| A(zB)i ⌦ |zBi, (1)

where p(zB) is the probability of measuring a given bit-
string in B, and | A(zB)i is a pure quantum state in A

conditioned on the measurement outcome in B. Thus,
for each possible zB , there is a well-defined pure state in
A. On aggregate these states and their respective prob-
abilities, p(zB), form what we term the projected ensem-
ble18 (Fig. 1d); similar concepts also enter the defini-

tion of localizable entanglement29,30, and in the concept
of conditional wavefunctions31,32. By tracking the evolu-
tion of the states and probabilities of the projected en-
semble as a function of time, we can probe for signatures
of the ensemble approaching a Haar-random distribution
(Fig. 1e).
We stress that this concept is distinct from typical

studies of equilibration in quantum many-body systems
where the central object of interest is the reduced den-
sity operator in A, ⇢̂A = TrB(⇢̂), found from trac-
ing out B from the full density operator ⇢̂. Such a re-
duced density operator can be directly constructed from
a weighted average over the projected ensemble states,
⇢̂A =

P
zB

p(zB)| A(zB)ih A(zB)|, but whereas probes
of ⇢̂A only provide information about averages of ensem-
ble observables, by studying the full distribution of states
directly, we probe higher-order fluctuations as well.
To elucidate this distinction, and reveal the emergence

of the random statistical distribution of the projected
ensemble, we employ a Rydberg analog quantum simu-
lator33–35, implemented with alkaline-earth atoms36–39,
which provides high fidelity preparation, evolution, and
readout35 (Ext. Data Fig. 1, Methods). After a variable
evolution time, we perform site-resolved readout in a
fixed measurement basis, yielding experimentally mea-
sured bitstrings, z, which we bipartition into bitstrings
zA and zB for various choices of subsystems A and B,
respectively (Methods).
Hamiltonian parameters are chosen such that, after a

short settling time, themarginal probability of measuring
a given zA (while ignoring the complementary zB) agrees
with the prediction from ⇢̂A being a maximally mixed
state. In the language of quantum thermalization15,40–45,
this prediction is equivalent to saying ⇢̂A has reached
an equilibrium at infinite e↵ective temperature with the
complement B as an e↵ective, intrinsic bath15,16,46. For
instance, for a single-qubit in A such a reduced density
operator equilibrated at infinite e↵ective temperature ap-
pears as ⇢̂A = 1

2

�
|0ih0| + |1ih1|

�
, with a marginal prob-

ability of finding the qubit in state |0i, p(zA = 0), of
1/DA = 0.5, (where DA = 2 is the local dimension of A).
As shown in Fig. 2a, after a short transient period the
experimentally measured probabilities, p(zA = 0) (grey
squares), equilibrate in agreement with this prediction;
we note that post-selection is applied in accordance with
the Rydberg blockade constraint (Methods).
We contrast this equilibration, however, with the dy-

namics of conditional probabilities, p(zA|zB), of mea-
suring a given zA conditioned on finding an accom-
panying measurement outcome in the intrinsic bath,
zB ; note the marginal probability for finding zA is the
weighted average over conditional probabilities, p(zA) =P

zB
p(zB)p(zA|zB). More generally, while p(zA) yields

information of the reduced density operator, such condi-
tional probabilities yield signatures of the projected en-
semble, as p(zA|zB) = |hzA| A(zB)i|2. In Fig. 2a, we plot
numerically simulated p(zA = 0|zB) (grey lines), with se-
lected traces highlighted in color with corresponding ex-



Optical tweezers and 
atom-by-atom assembly

ME*, Bernien*, Keesling*, Levine* et al. Science 354, 1024 (2016)
See also: Browaeys Group: Science 354, 1021 (2016)



Optical tweezer

1um

N. Schlosser, G. Reymond, I. Protsenko and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap”, 
Nature 411, 1024 (2001)



Tweezer Arrays
1d or 2d array generation with crossed AODs 100x100 of EMPTY tweezers

AOD X

RF1

RF2
AO

D Y

(Caltech data)

First large arrays: Single-Atom Trapping in Holographic 2D Arrays of Microtraps with Arbitrary Geometries
F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys
Phys. Rev. X 4, 021034



Stochastic loading

Single shots Average image

Caltech data : Cooper, Covey, Madjarov, Porsev, Safronova, ME, PRX 8, 041055 (2018)

Challenge: stochastic loading (either 0 or 1 atom per tweezer)

How can we generate large, defect-free arrays?



Atom-by-atom scheme

2. Image and remove empty traps

3. Rearrange remaining traps to form a defect-free array

1. Tweezers loaded from a cold cloud of atoms

ME*, Bernien*, Keesling*, Levine* et al. Science 354, 1024 (2016)
See also: Browaeys Group, Science 354, 1021 (2016) & KAIST group
Original proposals: Weiss et al., Phys. Rev. A 70, 040302 (2004), Vala et al., Phys. Rev. A 71, 032324 (2005)

Varying geometries:



Atom-by-atom assembly

Original Proposal: Weiss et al., Phys. Rev. A 70, 040302 (2004), Vala et al., Phys. Rev. A 71, 032324 (2005)

Browaeys, Paris

Ahn, KAIST

Harvard

Weiss, Pennstate (optical lattice)

• defect-free arrays of hundreds of atoms in 1d, 2d, and quasi-3d
• atomic distances adjustable ~1um - 100um
• flexible geometries
• much faster rep. rate compared to traditional cold atom exp.

+ few others 
including Chicago 
Caltech, …

Limits:
• Number of traps
• Total success prob. ~ 𝑝!, 𝑝 =single-atom rearrangement prob. 



Interaction mechanisms

Hubbard-type

Dipole-dipole

Rydberg States
(or molecules)

Photon-mediated



Rydberg interactions and limits

Bernien, Schwartz, Keesling, Levine, Omran, Pichler, Choi, Zibrov, ME,
Greiner, Vuletić, Lukin, Nature 551, 579, (2017).  And others …



Rydberg atoms

electronic
ground state
size ≈ 0.2 nm

Go to high principal
quantum number

N≫1
N=70
size > 200 nm

Interaction suited for typical 
atomic distances!

Strong van der Waals interactions:
• scale as N11/R6

• for N=70: ~10GHz @ 2μm
~1MHz @ 10μm



Rydberg array Hamiltonian

Rabi frequency 
(coupling strength) 
controlled by laser intensity

Ω

|r>

|g>

𝜈$

Interaction strength 
controlled by distance



Rydberg array Hamiltonian
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Quantum Science Applications

Review: Browaeys, Lahaye, Nature Physics 16, 132 (2020)
Nature 551, 579 (2017), Nature 568, 207 (2019) [ME]

Quantum simulation/
Many-body physics

Quantum magnetism/
Quantum phase transitions

Topological physics

Quantum computing/
Entangled state generation

Open:
• CFTs
• Lattice gauge theories
• Confinement
• Quantum chaos
• …

PRL 121, 123603 (2019), Science 365, 570 (2020) [ME] 

GHZ states ~ 20 qubits
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FIG. 1. Experimental scheme and entanglement proce-
dure. A, 87Rb atoms initially in a ground state |0i =��5S1/2, F = 2,mF = �2

↵
are coupled to a Rydberg state |1i =��70S1/2,mJ = �1/2

↵
by a light field with a coupling strength

⌦/(2⇡)  5MHz and a variable detuning �. Local addressing
beams at 840 nm target the edge atoms, reducing the energy
of |0i at those sites by a light shift �e. B, Many-body energy
gap spectrum of N = 8 atoms, including energy shifts on the
edge atoms. For positive detuning, the states with one ground
state atom on the edges are favored over states with a Ryd-
berg atom on both edges. An adiabatic pathway connects the
state |GN i = |000 · · · i with the two GHZ components. Gray
lines in the spectrum are energies associated with antisym-
metric states, which are not coupled to the initial state by
Hamiltonian (2). C, Method to control the phase � of GHZ
states. Every other site of the array is illuminated with a local
addressing beam at 420 nm, which imposes a negative di↵er-
ential light shift �p on the |0i-to-|1i transition. The o↵set
in state |0101 · · · i relative to |1010 · · · i leads to an evolving
dynamical phase.

number N of atoms. For large negative detuning � of
the Rydberg laser, the many-body ground state of the
Hamiltonian (2) is |GN i = |0000 · · · i. For large uniform
positive detuning �i = �, the ground-state manifold
consists of N/2 + 1 nearly degenerate classical config-
urations with N/2 Rydberg excitations. These include
in particular the two target antiferromagnetic configura-
tions |AN i = |0101 · · · 01i and

��AN

↵
= |1010 · · · 10i [24],

as well as other states with nearly identical energy (up to
a weak second-nearest neighbor interaction), with both

edges excited, such as |10010 · · · 01i. To isolate a co-
herent superposition of states |AN i and

��AN

↵
, we in-

troduced local light shifts �e using o↵-resonant laser
beams at 840 nm, generated with an acousto-optic de-
flector (AOD), which energetically penalize the excita-
tion of edge atoms (Fig. 1A), and e↵ectively eliminate
the contribution of undesired components. In this case,
the ground state for positive detuning is given by the
GHZ state (1) and there exists in principle an adiabatic
pathway that transforms the state |GN i into |GHZN i by
adiabatically increasing �(t) from negative to positive
values (Fig. 1B).

In practice, the time necessary to adiabatically prepare
such a GHZ state grows with system size and becomes
prohibitively long for large N , owing to small energy gaps
in the many-body spectrum. To address this limitation,
we used optimal control methods to find laser pulses that
maximize the GHZ state preparation fidelity while min-
imizing the amount of time necessary. Our specific im-
plementation, the remote dressed chopped-random basis
algorithm (RedCRAB) [25, 26], yields optimal shapes of
the laser intensity and detuning for the given experimen-
tal conditions [27]. For N  8 atoms, we performed
this optimization using �e/(2⇡) ⇡ �4.5MHz light shifts
on the edge atoms. For larger systems of N > 8, the
preparation was found to be more robust by increasing
the edge light shifts to �e/(2⇡) ⇡ �6MHz and adding
�4,N�3/(2⇡) ⇡ �1.5MHz light shifts on the third site
from both edges.

Our experiments are based on the optical tweezer
platform and experimental procedure described previ-
ously [20]. After the initialization of a defect-free N -
atom array, the traps were switched o↵ while the atoms
were illuminated with the Rydberg and local light shift
beams. The internal state of the atoms is subsequently
measured by imaging state |0i atoms recaptured in the
traps, while Rydberg atoms are repelled by the trapping
light [28]. The results of such experiments for a 20-atom
array are demonstrated in Fig. 2. After applying the op-
timized pulse shown in Fig. 2B, we measured the proba-
bility of observing di↵erent patterns pn = hn| ⇢ |ni in the
computational basis, where ⇢ is the density operator of
the prepared state. The measured probability to observe
each one of the 220 possible patterns in a 20-atom array
is shown in Fig. 2A. The states |A20i and

��A20

↵
clearly

stand out (Fig. 2A, blue bars) with a combined probabil-
ity of 0.585(14) and almost equal probability of observing
each one.

To characterize the experimentally prepared state ⇢,
we evaluated the GHZ state fidelity

F = hGHZN | ⇢ |GHZN i = 1

2

�
pAN + pAN

+ cN + c
⇤
N

�

(3)
where pAN and pAN

are the populations in the target

components and cN =
⌦
AN

�� ⇢ |AN i is the o↵-diagonal

Ground/Rydberg: F~0.97 
Hyperfine: F~0.97

Two qubits

3

a two-level system due to the collective coupling from
|11i $ |W i = 1p

2
(|1ri + |r1i), with enhanced Rabi fre-

quency
p
2⌦ and the same detuning � (Fig. 2c, bottom).

For a chosen detuning �, we select the pulse length ⌧

such that the first laser pulse completes a full cycle of a
detuned Rabi oscillation for the |11i system. The same
pulse drives an incomplete Rabi oscillation on the |01i
system. A subsequent phase jump ⌦ ! ⌦e

i⇠ rotates
the orientation of the drive field around the Z axis by
an angle ⇠ such that a second pulse of length ⌧ com-
pletes the oscillation and returns the state to |01i, while
driving a second complete detuned oscillation on the |11i
configuration. By the end of the second pulse, both |01i
and |11i return to their initial positions on the Bloch
sphere but with accumulated dynamical phases �01 and
�11, which depend on the geometric surface area of the
Bloch sphere enclosed by the �-dependent trajectories.
As shown in Fig. 2d, for a specific choice of laser detun-
ing (� ⇡ 0.377⌦), 2�01 � ⇡ = �11, realizing the CZ gate
(1). Remarkably, this gate protocol is faster (total time
2⌧ ⇡ 2.732⇡/⌦) than the traditional approach [7] of se-
quential local pulses (total time 4⇡/⌦), and o↵ers the
additional advantage of requiring only global coupling of
both qubits.

We demonstrate the parallel operation of the CZ gate
on five separate pairs of atoms by using it to create Bell
states of the form |�+i = 1p

2
(|00i+|11i). We initialize all

atomic qubits in |0i, then apply a global X(⇡/2) Raman
pulse to prepare each atom in |�iy = 1p

2
(|0i� i|1i). The

CZ gate protocol, consisting of the two Rydberg laser
pulses, is then applied over a total time of 0.4 µs, dur-
ing which the optical tweezers are turned o↵ to avoid
anti-trapping of the Rydberg state. The pulse sequence
realizes map (1), along with an additional phase rotation
on each qubit due to the light shift of the Rydberg lasers
on the hyperfine qubit states. We embed the CZ im-
plementation in an echo sequence to cancel the e↵ect of
the light shift, and we add an additional short light shift
to eliminate the single-particle phase � [26]. Altogether,
this realizes a unitary that combines the canonical CZ
gate with a global X(⇡) gate (enclosed region in Fig.
3a,d). A final X(⇡/4) rotation produces the Bell state
|�+i (Fig. 3a) [26].

We characterize the experimentally produced state
⇢ by evaluating its fidelity with respect to the target
Bell state F = h�+|⇢|�+i. The fidelity is the sum of
two terms, the first of which is the Bell state popula-
tions, given by the probability of observing |00i or |11i
(Fig. 3b). The second term is the coherence between
|00i and |11i, measured by applying a global Z(✓) rota-
tion followed by a global X(⇡/2) rotation and observing
parity oscillations (Fig. 3a,c) [28]. When evaluating the
contributions to the fidelity, we account for atom popula-
tion left in the Rydberg state after the operation and for
background losses. Both of these correspond to leakage
out of the qubit subspace and can lead to overestimation

� ��� ��� ���
7OHZL�HJJ\T\SH[PVU�[PTL��¹Z�

��

�

�

7
HY
P[`

�� �� �� ��
;^V�X\IP[�Z[H[L

�

����

���

7
YV
I
HI

PSP
[`

b) c)

a)

6\
[W
\[

0UW\[

7
YV
I
HI

PSP
[`

��
��

��
��

��
��

��
���

���

�

6\
[W
\[

0UW\[

7
YV
I
HI

PSP
[`

��
��

��
��

��
��

��
���

���

�

d)

e) f )

Init.

FIG. 3. Bell state preparation and CNOT gate. a)
Quantum circuit used to prepare and probe the |�+i state. b)
Measured populations of the Bell states. Raw measurements
associating |0i with atom presence and |1i with atom absence
yields 97.6(2)% in the target states. Separate measurements
of leakage out of the qubit subspace indicate a small contribu-
tion (light shaded region) to these probabilities; subtracting
this contribution, the measured population is � 95.8(3)%. c)
The parity oscillation with respect to accumulated phase ✓
has a measured amplitude of 94.2(4)%. The resulting lower
bound on Bell state fidelity is F � 95.0(2)% (raw measure-
ments yield F raw = 95.9(2)%). Correction for SPAM errors
results in Fc � 97.4(3)%. d) The CNOT gate is constructed
from our native CZ gate with the addition of local hyper-
fine qubit rotations. e) The four computational basis states
are prepared with average fidelity 96.8(2)%. f) We apply the
CNOT sequence to the four computational basis states and
measure the truth table fidelity to be FCNOT � 94.1(2)%.
Corrected for SPAM errors, the fidelity is Fc

CNOT � 96.5(3)%.
Wireframes on purple bars show ideal outcomes; solid bars
show the raw measurement; the light-shaded top portions of
the bars bound the contribution from qubit leakage. Only the
darker lower region is counted towards fidelities.

of the |1i populations and Bell state fidelities in the raw
measurements. Using separate measurements of atoms in
both hyperfine qubit states [26], we determine a conser-
vative upper bound on these leakage errors and subtract
this contribution (shown in light shaded regions of bar
plots in Figs. 3,4, see [26]). The resulting lower bound

Quantum dynamics
(e.g, many-body scars)
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FIG. 6: Emergent oscillations in many-body dynamics after sudden quench. a, Schematic sequence (top, showing
�(t)) involves adiabatic preparation and then a sudden quench to single-atom resonance. The single-atom trajectories are
shown (bottom) for a 9 atom cluster, with the colour scale indicating the Rydberg probability. We observe that the initial
crystal with a Rydberg excitation at every odd trap site (left inset) collapses after the quench, and a crystal with an excitation
at every even site builds up (middle inset). At a later time the initial crystal revives with a frequency of ⌦/1.38(1) (right
inset). Error bars denote 68% confidence intervals. b, Domain-wall density after the quench. The dynamics decay slowly on
a timescale of 0.88 µs. Shaded region represents the standard error of the mean. Solid blue line is a fully coherent matrix
product state (MPS) simulation with bond dimension D = 256, taking into account measurement fidelity. c, Toy model of
non-interacting dimers (see main text). Blue (white) circles represent atoms in state |gi (|ri). d, Numerical calculations of the
dynamics after a quench, starting from an ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall density
(red) and the growth of entanglement entropy of the half chain (13 atoms; blue) are shown as functions of time after the
quench. Dashed lines take into account only nearest-neighbour (NN) blockade constraint. Solid lines correspond to the full
1/R6 interaction potential.

quench dynamics of Rydberg crystals initially prepared
deep in the Z2 ordered phase, as we change the detun-
ing �(t) suddenly to the single-atom resonance � = 0
(Fig. 6a). After such a quench, we observe oscillations of
many-body states between the initial crystal and a com-
plementary crystal in which each internal atomic state is
inverted (Fig. 6a). Remarkably, we find that these oscil-
lations are robust, persisting over several periods with a
frequency that is largely independent of the system size.
This is confirmed by measuring the dynamics of the do-
main wall density, which signals the appearance and dis-
appearance of the crystalline states, shown in Fig. 6b for
arrays of 9 and 51 atoms. We find that the initial crystal
repeatedly revives with a period that is slower by a fac-
tor of 1.38(1) (error denotes the uncertainty in the fit)
compared to the Rabi-oscillation period for independent,
non-interacting atoms.

DISCUSSION

Several important features of these experimental obser-
vations should be noted. First, the Z2 ordered state can-
not be characterized by a simple thermal ensemble. More
specifically, if an e↵ective temperature is estimated based
on the experimentally determined, corrected domain wall
density of 0.1, then the corresponding thermal ensemble
predicts a correlation length ⇠th = 4.48(3), which is sig-
nificantly longer than the measured value ⇠ = 3.03(6)
(Methods). Such a discrepancy is also reflected in dis-
tinct probability distributions for the number of domain
walls (Fig. 5c). These observations suggest that the sys-
tem does not thermalize within the timescale of the Z2

state preparation.

Even more striking is the coherent and persistent oscil-
lation of the crystalline order after the quantum quench.
With respect to the quenched Hamiltonian (� = 0), the
energy density of our Z2 ordered state corresponds to
that of an infinite-temperature ensemble within the man-

Remarkable experimental progress 
but we have only seen the tip of the iceberg.



Experimental challenges and limitations
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Can we potentially improve on this by 
using alkaline earth atoms?

Are there qualitatively different 
applications?



Alkaline Earth Atoms

88Sr
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88Sr atom array

See previous work: Yb quantum gas microscopes (Takahashi, Kozuma)
See related AEA tweezer array work at JILA (A. Kaufman) and Princeton (J. Thompson)

High-fidelity imaging
Covey et al, PRL (2019)
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Tweezer clock
Madjarov et al, PRX (2019)

High-fidelity Rydberg
Madjarov, et al, Nat. Phys. 

(2020)

First imaging
+ Narrow-line cooling

Cooper et al, PRX (2018)
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Alkaline-earth-(like) atoms: Two valence electrons
-> Narrow optical transitions & Meta-stable states (typically used in optical clocks)



meta-stable state (𝜏 > 100𝑠)
= new ground state

Gil et al., PRL 112, 103601 (2014), Lochead et al., PRA 87, 053409 (2013)
See Princeton (J. Thompson) for first trapping results: Wilson, Saskin, Meng, Ma, Burgers, Thompson, PRL 128 (3), 033201(2019)

Main features:

• Large Rabi frequencies possible

• No extra decoherence from intermediate state

• Atoms are very cold (⟨𝑛⟩ ~ 0.2)

• New detection schemes (auto-ionization, F>0.996)

• Rydberg states are trappable

AEA Rydberg scheme



AEA Rabi Oscillations
n=61 Rabi oscillations (non-interacting, large distance, ∆= 0)

Madjarov*, Covey*, Shaw, Choi, Kale, Cooper, Pichler, Schkolnik, Williams, ME, Nature Physics 16, 857 (2020)

• First Rydberg Rabi oscillation with single AEAs
• Ω ~ 6 - 15 MHZ
• Pi-pulse fidelity ~ 0.995 

(without correcting for preparation & detection errors) 
• About ~50 oscillations visible (1/e time)



AEA Blockade
Use assembly to generate pairs

3.6um 11um

Ω

Madjarov*, Covey*, Shaw, Choi, Kale, Cooper, Pichler, Schkolnik, Williams, ME, Nature Physics 16, 857 (2020)

• First Rydberg blockade with AEAs
• Bell state fidelity:
> 0.98 uncorrected
> 0.99 corrected for state prep and measurement error

2

• Important for:
• Quantum simulation
• Quantum information (gates)
• Quantum metrology 



Clock transition control



698nm

5s2
1S0

Clock state control
Control of optical transition to metastable clock state

Currently achieve ~0.99 pi-fidelity

• What’s the minimal linewidth we can achieve?
• Can we build an optical clock out of this?



‘’Tweezer clock’’

Madjarov, Cooper, Shaw, Covey, Schkolnik, Yoon, Williams, ME, PRX 9, 041052 (2019)
See also JILA (A. Kaufman): Norcia, Young, Eckner, Oelker, Ye, Kaufman, Science 366, 6461 (2019)
Young, Eckner, Milner, Kedar, Norcia, Oelker, Schine, Ye, Kaufman, arXiv:2004.06095 (2020)

Site-resolved error signal:

Programmable controlPrecision measurements



Rydberg and Clock

698nm
5s2

1S0

698nm
5s2

1S0

1) Rydberg only: 3) Rydberg + clock 
(+ nuclear spins):

2) Clock only:

• |g> ↔ |r> qubit
• Quantum Simulation
• Quantum Optimization

|g>

|r>

• |s> ↔ |g> transition
• Tweezer Clock

• |s> ↔ |g> qubit
• Quantum Metrology
• Quantum Computing

Gil et al., PRL 112, 103601 (2014)

|s>

|g>

|s>

|g>

|r>

Some work in progress:
• Single-site rotations
• Two-qubit gates for |s> ↔ |g>
• Can we have a fully ‘programmable quantum clock’?  



How to benchmark many-body systems?

J. Choi*, A. L. Shaw*,  et al. arXiv:2103.03535 (2021)
Cotler*, Mark*, Huang*, et al. arXiv:2103.03536 (2021)
Mark, et al., arXiv:2205.12211 (2022)  

Soonwon Choi (MIT)

https://arxiv.org/pdf/2103.03535.pdf
https://arxiv.org/pdf/2103.03536.pdf


‘Entanglement challenge’
tim

e

|0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩

|0⟩ |0⟩ |0⟩ Ψ! ∝ 0 1 + 1 0 |0⟩ |0⟩ |0⟩ |0⟩

|0⟩ |0⟩ |0⟩ |0⟩ |0⟩Ψ" ∝ 0 1 + 1 0 0 0 + 1 1
+( 0 0 + 1 1 )( 0 1 + 1 0 )

|0⟩ |0⟩ |0⟩Ψ# ∝ (𝑓(𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓) 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

Entanglement Growth vs Error Rate

Benchmarking



Quantum simulator benchmarking

Time
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Pure state from theory
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Fidelity: F = h |⇢exp| i

Mixed state from experiment

=
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| i

Error

Challenge: reconstructing rexp is not possible for large systems

… utilize new insights into quantum chaos to estimate F

See also work by P. Zoller & R. Blatt as well as J. Eisert
J. Choi*, A. L. Shaw*, I. S. Madjarov, X. Xie, J. P. Covey, J.S. Cotler, D. K. Mark, HY Huang, A. Kale, H, Pichler, F. G.S.L. 
Brandão, S. Choi, ME arXiv:2103.03535 (2021)

⇢exp ⇡ F | ih |+ (1� F )⇠error
<latexit sha1_base64="LY3WKoWhG9SQqJN1BdT5VBF24Rc="></latexit>

F ~ Probability of having made no error in experiment

https://arxiv.org/pdf/2103.03535.pdf


Many-body benchmarking from randomness

Z

p1(z)

p0(z)
Ideal

Error

Fidelity ~ Theory-Experiment bitstring correlations

Example: linear cross-entropy

See Arute et al., Nature 574, 505–510(2019)
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Fig. 1 | Random pure state ensembles from
Hamiltonian dynamics. a, A thought experiment,
consisting of a programmable device producing arbitrary
quantum states | ji through unitary operations Uj , where j

is a program setting. b, Repeatedly applying explicitly
randomized unitary evolution to an initial state | 0i

produces an ensemble of pure quantum states | ji (blue
arrows) which is distributed close-to uniformly over the
Hilbert space, H (grey sphere), a random state ensemble. c,
Here we demonstrate a new approach to creating random
state ensembles based on only a single instance of
time-independent Hamiltonian evolution. An initial product
state evolves under a Hamiltonian, Ĥ, before site-resolved
projective measurement in the computational basis {|0i,
|1i}. We bipartition the system into two subsystems A and
B of length LA and LB , respectively, and analyze the
conditional measurement outcomes in subsystem A, zA,
given a specific result zB from the complement B. These
outcomes are described by the projected ensemble, a pure
state ensemble in A, {| A(zB)i}, realized through
measurement of B. d, As an example, when LA = 1,
conditional single-qubit quantum states | A(zB)i are
visualized on a Bloch sphere for all possible zB bitstrings. e,
Numerical simulations of our experimental system show that
the distribution of the conditional pure state ensemble in A

changes during evolution into a close-to random form, with
selected states highlighted to demonstrate their late-time
divergence despite similar initial conditions.

of the total system state as

| i =
X

zB

p
p(zB)| A(zB)i ⌦ |zBi, (1)

where p(zB) is the probability of measuring a given bit-
string in B, and | A(zB)i is a pure quantum state in A

conditioned on the measurement outcome in B. Thus,
for each possible zB , there is a well-defined pure state in
A. On aggregate these states and their respective prob-
abilities, p(zB), form what we term the projected ensem-
ble18 (Fig. 1d); similar concepts also enter the defini-

tion of localizable entanglement29,30, and in the concept
of conditional wavefunctions31,32. By tracking the evolu-
tion of the states and probabilities of the projected en-
semble as a function of time, we can probe for signatures
of the ensemble approaching a Haar-random distribution
(Fig. 1e).
We stress that this concept is distinct from typical

studies of equilibration in quantum many-body systems
where the central object of interest is the reduced den-
sity operator in A, ⇢̂A = TrB(⇢̂), found from trac-
ing out B from the full density operator ⇢̂. Such a re-
duced density operator can be directly constructed from
a weighted average over the projected ensemble states,
⇢̂A =

P
zB

p(zB)| A(zB)ih A(zB)|, but whereas probes
of ⇢̂A only provide information about averages of ensem-
ble observables, by studying the full distribution of states
directly, we probe higher-order fluctuations as well.
To elucidate this distinction, and reveal the emergence

of the random statistical distribution of the projected
ensemble, we employ a Rydberg analog quantum simu-
lator33–35, implemented with alkaline-earth atoms36–39,
which provides high fidelity preparation, evolution, and
readout35 (Ext. Data Fig. 1, Methods). After a variable
evolution time, we perform site-resolved readout in a
fixed measurement basis, yielding experimentally mea-
sured bitstrings, z, which we bipartition into bitstrings
zA and zB for various choices of subsystems A and B,
respectively (Methods).
Hamiltonian parameters are chosen such that, after a

short settling time, themarginal probability of measuring
a given zA (while ignoring the complementary zB) agrees
with the prediction from ⇢̂A being a maximally mixed
state. In the language of quantum thermalization15,40–45,
this prediction is equivalent to saying ⇢̂A has reached
an equilibrium at infinite e↵ective temperature with the
complement B as an e↵ective, intrinsic bath15,16,46. For
instance, for a single-qubit in A such a reduced density
operator equilibrated at infinite e↵ective temperature ap-
pears as ⇢̂A = 1

2

�
|0ih0| + |1ih1|

�
, with a marginal prob-

ability of finding the qubit in state |0i, p(zA = 0), of
1/DA = 0.5, (where DA = 2 is the local dimension of A).
As shown in Fig. 2a, after a short transient period the
experimentally measured probabilities, p(zA = 0) (grey
squares), equilibrate in agreement with this prediction;
we note that post-selection is applied in accordance with
the Rydberg blockade constraint (Methods).
We contrast this equilibration, however, with the dy-

namics of conditional probabilities, p(zA|zB), of mea-
suring a given zA conditioned on finding an accom-
panying measurement outcome in the intrinsic bath,
zB ; note the marginal probability for finding zA is the
weighted average over conditional probabilities, p(zA) =P

zB
p(zB)p(zA|zB). More generally, while p(zA) yields

information of the reduced density operator, such condi-
tional probabilities yield signatures of the projected en-
semble, as p(zA|zB) = |hzA| A(zB)i|2. In Fig. 2a, we plot
numerically simulated p(zA = 0|zB) (grey lines), with se-
lected traces highlighted in color with corresponding ex-

Features:
• Single basis readout
• Required samples independent of 

system size (in principle)

⇡ F
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Fidelity: F = h |⇢exp| i 2

Fig. 1 | Random pure state ensembles from
Hamiltonian dynamics. a, A thought experiment,
consisting of a programmable device producing arbitrary
quantum states | ji through unitary operations Uj , where j

is a program setting. b, Repeatedly applying explicitly
randomized unitary evolution to an initial state | 0i

produces an ensemble of pure quantum states | ji (blue
arrows) which is distributed close-to uniformly over the
Hilbert space, H (grey sphere), a random state ensemble. c,
Here we demonstrate a new approach to creating random
state ensembles based on only a single instance of
time-independent Hamiltonian evolution. An initial product
state evolves under a Hamiltonian, Ĥ, before site-resolved
projective measurement in the computational basis {|0i,
|1i}. We bipartition the system into two subsystems A and
B of length LA and LB , respectively, and analyze the
conditional measurement outcomes in subsystem A, zA,
given a specific result zB from the complement B. These
outcomes are described by the projected ensemble, a pure
state ensemble in A, {| A(zB)i}, realized through
measurement of B. d, As an example, when LA = 1,
conditional single-qubit quantum states | A(zB)i are
visualized on a Bloch sphere for all possible zB bitstrings. e,
Numerical simulations of our experimental system show that
the distribution of the conditional pure state ensemble in A

changes during evolution into a close-to random form, with
selected states highlighted to demonstrate their late-time
divergence despite similar initial conditions.

of the total system state as

| i =
X

zB

p
p(zB)| A(zB)i ⌦ |zBi, (1)

where p(zB) is the probability of measuring a given bit-
string in B, and | A(zB)i is a pure quantum state in A

conditioned on the measurement outcome in B. Thus,
for each possible zB , there is a well-defined pure state in
A. On aggregate these states and their respective prob-
abilities, p(zB), form what we term the projected ensem-
ble18 (Fig. 1d); similar concepts also enter the defini-

tion of localizable entanglement29,30, and in the concept
of conditional wavefunctions31,32. By tracking the evolu-
tion of the states and probabilities of the projected en-
semble as a function of time, we can probe for signatures
of the ensemble approaching a Haar-random distribution
(Fig. 1e).
We stress that this concept is distinct from typical

studies of equilibration in quantum many-body systems
where the central object of interest is the reduced den-
sity operator in A, ⇢̂A = TrB(⇢̂), found from trac-
ing out B from the full density operator ⇢̂. Such a re-
duced density operator can be directly constructed from
a weighted average over the projected ensemble states,
⇢̂A =

P
zB

p(zB)| A(zB)ih A(zB)|, but whereas probes
of ⇢̂A only provide information about averages of ensem-
ble observables, by studying the full distribution of states
directly, we probe higher-order fluctuations as well.
To elucidate this distinction, and reveal the emergence

of the random statistical distribution of the projected
ensemble, we employ a Rydberg analog quantum simu-
lator33–35, implemented with alkaline-earth atoms36–39,
which provides high fidelity preparation, evolution, and
readout35 (Ext. Data Fig. 1, Methods). After a variable
evolution time, we perform site-resolved readout in a
fixed measurement basis, yielding experimentally mea-
sured bitstrings, z, which we bipartition into bitstrings
zA and zB for various choices of subsystems A and B,
respectively (Methods).
Hamiltonian parameters are chosen such that, after a

short settling time, themarginal probability of measuring
a given zA (while ignoring the complementary zB) agrees
with the prediction from ⇢̂A being a maximally mixed
state. In the language of quantum thermalization15,40–45,
this prediction is equivalent to saying ⇢̂A has reached
an equilibrium at infinite e↵ective temperature with the
complement B as an e↵ective, intrinsic bath15,16,46. For
instance, for a single-qubit in A such a reduced density
operator equilibrated at infinite e↵ective temperature ap-
pears as ⇢̂A = 1

2

�
|0ih0| + |1ih1|

�
, with a marginal prob-

ability of finding the qubit in state |0i, p(zA = 0), of
1/DA = 0.5, (where DA = 2 is the local dimension of A).
As shown in Fig. 2a, after a short transient period the
experimentally measured probabilities, p(zA = 0) (grey
squares), equilibrate in agreement with this prediction;
we note that post-selection is applied in accordance with
the Rydberg blockade constraint (Methods).
We contrast this equilibration, however, with the dy-

namics of conditional probabilities, p(zA|zB), of mea-
suring a given zA conditioned on finding an accom-
panying measurement outcome in the intrinsic bath,
zB ; note the marginal probability for finding zA is the
weighted average over conditional probabilities, p(zA) =P

zB
p(zB)p(zA|zB). More generally, while p(zA) yields

information of the reduced density operator, such condi-
tional probabilities yield signatures of the projected en-
semble, as p(zA|zB) = |hzA| A(zB)i|2. In Fig. 2a, we plot
numerically simulated p(zA = 0|zB) (grey lines), with se-
lected traces highlighted in color with corresponding ex-

Random circuit

What are random state ensembles?

How do we get them in experiment?

However: Requires
random state 
ensembles



What are random state ensembles?



Random state ensembles
2

Fig. 1 | Random pure state ensembles from
Hamiltonian dynamics. a, A thought experiment,
consisting of a programmable device producing arbitrary
quantum states | ji through unitary operations Uj , where j

is a program setting. b, Repeatedly applying explicitly
randomized unitary evolution to an initial state | 0i

produces an ensemble of pure quantum states | ji (blue
arrows) which is distributed close-to uniformly over the
Hilbert space, H (grey sphere), a random state ensemble. c,
Here we demonstrate a new approach to creating random
state ensembles based on only a single instance of
time-independent Hamiltonian evolution. An initial product
state evolves under a Hamiltonian, Ĥ, before site-resolved
projective measurement in the computational basis {|0i,
|1i}. We bipartition the system into two subsystems A and
B of length LA and LB , respectively, and analyze the
conditional measurement outcomes in subsystem A, zA,
given a specific result zB from the complement B. These
outcomes are described by the projected ensemble, a pure
state ensemble in A, {| A(zB)i}, realized through
measurement of B. d, As an example, when LA = 1,
conditional single-qubit quantum states | A(zB)i are
visualized on a Bloch sphere for all possible zB bitstrings. e,
Numerical simulations of our experimental system show that
the distribution of the conditional pure state ensemble in A

changes during evolution into a close-to random form, with
selected states highlighted to demonstrate their late-time
divergence despite similar initial conditions.

of the total system state as

| i =
X

zB

p
p(zB)| A(zB)i ⌦ |zBi, (1)

where p(zB) is the probability of measuring a given bit-
string in B, and | A(zB)i is a pure quantum state in A

conditioned on the measurement outcome in B. Thus,
for each possible zB , there is a well-defined pure state in
A. On aggregate these states and their respective prob-
abilities, p(zB), form what we term the projected ensem-
ble18 (Fig. 1d); similar concepts also enter the defini-

tion of localizable entanglement29,30, and in the concept
of conditional wavefunctions31,32. By tracking the evolu-
tion of the states and probabilities of the projected en-
semble as a function of time, we can probe for signatures
of the ensemble approaching a Haar-random distribution
(Fig. 1e).
We stress that this concept is distinct from typical

studies of equilibration in quantum many-body systems
where the central object of interest is the reduced den-
sity operator in A, ⇢̂A = TrB(⇢̂), found from trac-
ing out B from the full density operator ⇢̂. Such a re-
duced density operator can be directly constructed from
a weighted average over the projected ensemble states,
⇢̂A =

P
zB

p(zB)| A(zB)ih A(zB)|, but whereas probes
of ⇢̂A only provide information about averages of ensem-
ble observables, by studying the full distribution of states
directly, we probe higher-order fluctuations as well.
To elucidate this distinction, and reveal the emergence

of the random statistical distribution of the projected
ensemble, we employ a Rydberg analog quantum simu-
lator33–35, implemented with alkaline-earth atoms36–39,
which provides high fidelity preparation, evolution, and
readout35 (Ext. Data Fig. 1, Methods). After a variable
evolution time, we perform site-resolved readout in a
fixed measurement basis, yielding experimentally mea-
sured bitstrings, z, which we bipartition into bitstrings
zA and zB for various choices of subsystems A and B,
respectively (Methods).
Hamiltonian parameters are chosen such that, after a

short settling time, themarginal probability of measuring
a given zA (while ignoring the complementary zB) agrees
with the prediction from ⇢̂A being a maximally mixed
state. In the language of quantum thermalization15,40–45,
this prediction is equivalent to saying ⇢̂A has reached
an equilibrium at infinite e↵ective temperature with the
complement B as an e↵ective, intrinsic bath15,16,46. For
instance, for a single-qubit in A such a reduced density
operator equilibrated at infinite e↵ective temperature ap-
pears as ⇢̂A = 1

2

�
|0ih0| + |1ih1|

�
, with a marginal prob-

ability of finding the qubit in state |0i, p(zA = 0), of
1/DA = 0.5, (where DA = 2 is the local dimension of A).
As shown in Fig. 2a, after a short transient period the
experimentally measured probabilities, p(zA = 0) (grey
squares), equilibrate in agreement with this prediction;
we note that post-selection is applied in accordance with
the Rydberg blockade constraint (Methods).
We contrast this equilibration, however, with the dy-

namics of conditional probabilities, p(zA|zB), of mea-
suring a given zA conditioned on finding an accom-
panying measurement outcome in the intrinsic bath,
zB ; note the marginal probability for finding zA is the
weighted average over conditional probabilities, p(zA) =P

zB
p(zB)p(zA|zB). More generally, while p(zA) yields

information of the reduced density operator, such condi-
tional probabilities yield signatures of the projected en-
semble, as p(zA|zB) = |hzA| A(zB)i|2. In Fig. 2a, we plot
numerically simulated p(zA = 0|zB) (grey lines), with se-
lected traces highlighted in color with corresponding ex-
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Fig. 1 | Random pure state ensembles from
Hamiltonian dynamics. a, A thought experiment,
consisting of a programmable device producing arbitrary
quantum states | ji through unitary operations Ûj , where j

enumerates over di↵erent program setting. b, Repeatedly
applying explicitly randomized unitary evolution to an
initial state | 0i produces an ensemble of pure quantum
states | ji (blue arrows) which is distributed near-uniformly
over the Hilbert space, H (grey sphere), a random state
ensemble. c, Here we demonstrate a new approach to
creating random state ensembles based on only a single
instance of time-independent Hamiltonian evolution. An
initial product state evolves under a Hamiltonian, Ĥ, before
site-resolved projective measurement in the computational
basis {|0i, |1i}. We bipartition the system into two
subsystems A and B, and analyze the conditional
measurement outcomes in subsystem A, zA, given a specific
result zB from the complement B. These outcomes are
described by the projected ensemble, a pure state ensemble
in A, {| A(zB)i}, realized through measurement of B. d, As
an example for when A consists of a single qubit, conditional
single-qubit quantum states | A(zB)i are visualized on a
Bloch sphere for all possible zB bitstrings. e, Numerical
simulations of our experimental system show that the
distribution of the conditional pure state ensemble in A

changes during evolution into a near-uniform form, with
selected states highlighted to demonstrate their late-time
divergence despite similar initial conditions.

A, and its complement B (Fig. 1c). Explicitly keeping
track of measurement results in B, which are bitstrings of
the form e.g. zB = 100 · · · 010, provides a full description
of the total system state as

| i =
X

zB

p
p(zB)| A(zB)i ⌦ |zBi, (1)

where p(zB) is the probability of measuring a given bit-
string in B, and | A(zB)i is a pure quantum state in A

conditioned on the measurement outcome in B. Thus, for
each possible zB , there is a well-defined pure state in A,

the set of all of which is generally not orthogonal. To-
gether these states, | A(zB)i, and their respective prob-
abilities, p(zB), form what we term the projected ensem-
ble17 (Fig. 1d); similar concepts also enter the definition
of localizable entanglement31,32, and in the concept of
conditional wavefunctions33,34. By tracking the time evo-
lution of the projected ensemble through both the states
and probabilities which compose it, we can probe for sig-
natures of the ensemble approaching a Haar-random dis-
tribution (Fig. 1e).
We stress that this concept is distinct from typical

studies of equilibration in quantum many-body systems.
There, the central object of interest is the reduced density
operator on A, ⇢̂A = TrB(⇢̂), found from tracing out B

from the full density operator ⇢̂. The reduced density op-
erator can be constructed by averaging over the projected
ensemble states, ⇢̂A =

P
zB

p(zB)| A(zB)ih A(zB)|, but
as such can only provide information on the mean of en-
semble observables, and never on the actual ensemble
distribution itself.
To elucidate the importance of this distinction and

reveal the emergence of random statistical properties
of the projected ensemble, we employ a Rydberg ana-
log quantum simulator28–30, implemented with alkaline-
earth atoms35–38, which provides high fidelity prepara-
tion, evolution, and readout30 (Ext. Data Fig. 1, Meth-
ods). After a variable evolution time, we perform site-
resolved readout in a fixed measurement basis, yielding
experimentally measured bitstrings, z, which we biparti-
tion into bitstrings zA and zB (Methods).
Hamiltonian parameters are chosen such that, after a

short settling time, the marginal probability, p(zA), of
measuring a given zA (while ignoring the complementary
zB) agrees with the prediction from ⇢̂A being a maxi-
mally mixed state. In the language of quantum thermal-
ization15,39–44, this prediction is equivalent to saying ⇢̂A
has reached an equilibrium at infinite e↵ective temper-
ature with the complement B as an e↵ective, intrinsic
bath15,16,45. For a single qubit in A, such a reduced den-
sity operator is ⇢̂A = 1

2

�
|0ih0| + |1ih1|

�
: the qubit has a

probability of being in state |0i of p(zA=0) = 1/DA =
1/2, where DA = 2 is the local dimension of A. As
shown in Fig. 2a, after a short transient period the experi-
mentally measured probabilities, p(zA=0) (grey squares),
equilibrate in agreement with this prediction. We note
that post-selection is applied in accordance with the Ry-
dberg blockade constraint (Methods).
We now contrast this equilibration with the dynam-

ics of conditional probabilities, p(zA|zB), of measur-
ing a given zA conditioned on finding an accompany-
ing measurement outcome in the intrinsic bath, zB .
We note the marginal probability for finding zA is the
weighted average over conditional probabilities, p(zA) =P

zB
p(zB)p(zA|zB). More generally, while p(zA) yields

information of the reduced density operator, such con-
ditional probabilities yield signatures of the projected
ensemble, as p(zA|zB) = |hzA| A(zB)i|2. In Fig. 2a, we
plot numerically simulated p(zA=0|zB) in grey, with se-
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Fig. 1 | Random pure state ensembles from
Hamiltonian dynamics. a, A thought experiment,
consisting of a programmable device producing arbitrary
quantum states | ji through unitary operations Uj , where j

is a program setting. b, Repeatedly applying explicitly
randomized unitary evolution to an initial state | 0i

produces an ensemble of pure quantum states | ji (blue
arrows) which is distributed close-to uniformly over the
Hilbert space, H (grey sphere), a random state ensemble. c,
Here we demonstrate a new approach to creating random
state ensembles based on only a single instance of
time-independent Hamiltonian evolution. An initial product
state evolves under a Hamiltonian, Ĥ, before site-resolved
projective measurement in the computational basis {|0i,
|1i}. We bipartition the system into two subsystems A and
B of length LA and LB , respectively, and analyze the
conditional measurement outcomes in subsystem A, zA,
given a specific result zB from the complement B. These
outcomes are described by the projected ensemble, a pure
state ensemble in A, {| A(zB)i}, realized through
measurement of B. d, As an example, when LA = 1,
conditional single-qubit quantum states | A(zB)i are
visualized on a Bloch sphere for all possible zB bitstrings. e,
Numerical simulations of our experimental system show that
the distribution of the conditional pure state ensemble in A

changes during evolution into a close-to random form, with
selected states highlighted to demonstrate their late-time
divergence despite similar initial conditions.

of the total system state as

| i =
X

zB

p
p(zB)| A(zB)i ⌦ |zBi, (1)

where p(zB) is the probability of measuring a given bit-
string in B, and | A(zB)i is a pure quantum state in A

conditioned on the measurement outcome in B. Thus,
for each possible zB , there is a well-defined pure state in
A. On aggregate these states and their respective prob-
abilities, p(zB), form what we term the projected ensem-
ble18 (Fig. 1d); similar concepts also enter the defini-

tion of localizable entanglement29,30, and in the concept
of conditional wavefunctions31,32. By tracking the evolu-
tion of the states and probabilities of the projected en-
semble as a function of time, we can probe for signatures
of the ensemble approaching a Haar-random distribution
(Fig. 1e).
We stress that this concept is distinct from typical

studies of equilibration in quantum many-body systems
where the central object of interest is the reduced den-
sity operator in A, ⇢̂A = TrB(⇢̂), found from trac-
ing out B from the full density operator ⇢̂. Such a re-
duced density operator can be directly constructed from
a weighted average over the projected ensemble states,
⇢̂A =

P
zB

p(zB)| A(zB)ih A(zB)|, but whereas probes
of ⇢̂A only provide information about averages of ensem-
ble observables, by studying the full distribution of states
directly, we probe higher-order fluctuations as well.
To elucidate this distinction, and reveal the emergence

of the random statistical distribution of the projected
ensemble, we employ a Rydberg analog quantum simu-
lator33–35, implemented with alkaline-earth atoms36–39,
which provides high fidelity preparation, evolution, and
readout35 (Ext. Data Fig. 1, Methods). After a variable
evolution time, we perform site-resolved readout in a
fixed measurement basis, yielding experimentally mea-
sured bitstrings, z, which we bipartition into bitstrings
zA and zB for various choices of subsystems A and B,
respectively (Methods).
Hamiltonian parameters are chosen such that, after a

short settling time, themarginal probability of measuring
a given zA (while ignoring the complementary zB) agrees
with the prediction from ⇢̂A being a maximally mixed
state. In the language of quantum thermalization15,40–45,
this prediction is equivalent to saying ⇢̂A has reached
an equilibrium at infinite e↵ective temperature with the
complement B as an e↵ective, intrinsic bath15,16,46. For
instance, for a single-qubit in A such a reduced density
operator equilibrated at infinite e↵ective temperature ap-
pears as ⇢̂A = 1

2

�
|0ih0| + |1ih1|

�
, with a marginal prob-

ability of finding the qubit in state |0i, p(zA = 0), of
1/DA = 0.5, (where DA = 2 is the local dimension of A).
As shown in Fig. 2a, after a short transient period the
experimentally measured probabilities, p(zA = 0) (grey
squares), equilibrate in agreement with this prediction;
we note that post-selection is applied in accordance with
the Rydberg blockade constraint (Methods).
We contrast this equilibration, however, with the dy-

namics of conditional probabilities, p(zA|zB), of mea-
suring a given zA conditioned on finding an accom-
panying measurement outcome in the intrinsic bath,
zB ; note the marginal probability for finding zA is the
weighted average over conditional probabilities, p(zA) =P

zB
p(zB)p(zA|zB). More generally, while p(zA) yields

information of the reduced density operator, such condi-
tional probabilities yield signatures of the projected en-
semble, as p(zA|zB) = |hzA| A(zB)i|2. In Fig. 2a, we plot
numerically simulated p(zA = 0|zB) (grey lines), with se-
lected traces highlighted in color with corresponding ex-

2

Fig. 1 | Random pure state ensembles from
Hamiltonian dynamics. a, A thought experiment,
consisting of a programmable device producing arbitrary
quantum states | ji through unitary operations Ûj , where j

enumerates over di↵erent program setting. b, Repeatedly
applying explicitly randomized unitary evolution to an
initial state | 0i produces an ensemble of pure quantum
states | ji (blue arrows) which is distributed near-uniformly
over the Hilbert space, H (grey sphere), a random state
ensemble. c, Here we demonstrate a new approach to
creating random state ensembles based on only a single
instance of time-independent Hamiltonian evolution. An
initial product state evolves under a Hamiltonian, Ĥ, before
site-resolved projective measurement in the computational
basis {|0i, |1i}. We bipartition the system into two
subsystems A and B, and analyze the conditional
measurement outcomes in subsystem A, zA, given a specific
result zB from the complement B. These outcomes are
described by the projected ensemble, a pure state ensemble
in A, {| A(zB)i}, realized through measurement of B. d, As
an example for when A consists of a single qubit, conditional
single-qubit quantum states | A(zB)i are visualized on a
Bloch sphere for all possible zB bitstrings. e, Numerical
simulations of our experimental system show that the
distribution of the conditional pure state ensemble in A

changes during evolution into a near-uniform form, with
selected states highlighted to demonstrate their late-time
divergence despite similar initial conditions.

A, and its complement B (Fig. 1c). Explicitly keeping
track of measurement results in B, which are bitstrings of
the form e.g. zB = 100 · · · 010, provides a full description
of the total system state as

| i =
X

zB

p
p(zB)| A(zB)i ⌦ |zBi, (1)

where p(zB) is the probability of measuring a given bit-
string in B, and | A(zB)i is a pure quantum state in A

conditioned on the measurement outcome in B. Thus, for
each possible zB , there is a well-defined pure state in A,

the set of all of which is generally not orthogonal. To-
gether these states, | A(zB)i, and their respective prob-
abilities, p(zB), form what we term the projected ensem-
ble17 (Fig. 1d); similar concepts also enter the definition
of localizable entanglement31,32, and in the concept of
conditional wavefunctions33,34. By tracking the time evo-
lution of the projected ensemble through both the states
and probabilities which compose it, we can probe for sig-
natures of the ensemble approaching a Haar-random dis-
tribution (Fig. 1e).
We stress that this concept is distinct from typical

studies of equilibration in quantum many-body systems.
There, the central object of interest is the reduced density
operator on A, ⇢̂A = TrB(⇢̂), found from tracing out B

from the full density operator ⇢̂. The reduced density op-
erator can be constructed by averaging over the projected
ensemble states, ⇢̂A =

P
zB

p(zB)| A(zB)ih A(zB)|, but
as such can only provide information on the mean of en-
semble observables, and never on the actual ensemble
distribution itself.
To elucidate the importance of this distinction and

reveal the emergence of random statistical properties
of the projected ensemble, we employ a Rydberg ana-
log quantum simulator28–30, implemented with alkaline-
earth atoms35–38, which provides high fidelity prepara-
tion, evolution, and readout30 (Ext. Data Fig. 1, Meth-
ods). After a variable evolution time, we perform site-
resolved readout in a fixed measurement basis, yielding
experimentally measured bitstrings, z, which we biparti-
tion into bitstrings zA and zB (Methods).
Hamiltonian parameters are chosen such that, after a

short settling time, the marginal probability, p(zA), of
measuring a given zA (while ignoring the complementary
zB) agrees with the prediction from ⇢̂A being a maxi-
mally mixed state. In the language of quantum thermal-
ization15,39–44, this prediction is equivalent to saying ⇢̂A
has reached an equilibrium at infinite e↵ective temper-
ature with the complement B as an e↵ective, intrinsic
bath15,16,45. For a single qubit in A, such a reduced den-
sity operator is ⇢̂A = 1

2

�
|0ih0| + |1ih1|

�
: the qubit has a

probability of being in state |0i of p(zA=0) = 1/DA =
1/2, where DA = 2 is the local dimension of A. As
shown in Fig. 2a, after a short transient period the experi-
mentally measured probabilities, p(zA=0) (grey squares),
equilibrate in agreement with this prediction. We note
that post-selection is applied in accordance with the Ry-
dberg blockade constraint (Methods).
We now contrast this equilibration with the dynam-

ics of conditional probabilities, p(zA|zB), of measur-
ing a given zA conditioned on finding an accompany-
ing measurement outcome in the intrinsic bath, zB .
We note the marginal probability for finding zA is the
weighted average over conditional probabilities, p(zA) =P

zB
p(zB)p(zA|zB). More generally, while p(zA) yields

information of the reduced density operator, such con-
ditional probabilities yield signatures of the projected
ensemble, as p(zA|zB) = |hzA| A(zB)i|2. In Fig. 2a, we
plot numerically simulated p(zA=0|zB) in grey, with se-
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Fig. 1 | Random pure state ensembles from
Hamiltonian dynamics. a, A thought experiment,
consisting of a programmable device producing arbitrary
quantum states | ji through unitary operations Uj , where j

is a program setting. b, Repeatedly applying explicitly
randomized unitary evolution to an initial state | 0i

produces an ensemble of pure quantum states | ji (blue
arrows) which is distributed close-to uniformly over the
Hilbert space, H (grey sphere), a random state ensemble. c,
Here we demonstrate a new approach to creating random
state ensembles based on only a single instance of
time-independent Hamiltonian evolution. An initial product
state evolves under a Hamiltonian, Ĥ, before site-resolved
projective measurement in the computational basis {|0i,
|1i}. We bipartition the system into two subsystems A and
B of length LA and LB , respectively, and analyze the
conditional measurement outcomes in subsystem A, zA,
given a specific result zB from the complement B. These
outcomes are described by the projected ensemble, a pure
state ensemble in A, {| A(zB)i}, realized through
measurement of B. d, As an example, when LA = 1,
conditional single-qubit quantum states | A(zB)i are
visualized on a Bloch sphere for all possible zB bitstrings. e,
Numerical simulations of our experimental system show that
the distribution of the conditional pure state ensemble in A

changes during evolution into a close-to random form, with
selected states highlighted to demonstrate their late-time
divergence despite similar initial conditions.

of the total system state as

| i =
X

zB

p
p(zB)| A(zB)i ⌦ |zBi, (1)

where p(zB) is the probability of measuring a given bit-
string in B, and | A(zB)i is a pure quantum state in A

conditioned on the measurement outcome in B. Thus,
for each possible zB , there is a well-defined pure state in
A. On aggregate these states and their respective prob-
abilities, p(zB), form what we term the projected ensem-
ble18 (Fig. 1d); similar concepts also enter the defini-

tion of localizable entanglement29,30, and in the concept
of conditional wavefunctions31,32. By tracking the evolu-
tion of the states and probabilities of the projected en-
semble as a function of time, we can probe for signatures
of the ensemble approaching a Haar-random distribution
(Fig. 1e).
We stress that this concept is distinct from typical

studies of equilibration in quantum many-body systems
where the central object of interest is the reduced den-
sity operator in A, ⇢̂A = TrB(⇢̂), found from trac-
ing out B from the full density operator ⇢̂. Such a re-
duced density operator can be directly constructed from
a weighted average over the projected ensemble states,
⇢̂A =

P
zB

p(zB)| A(zB)ih A(zB)|, but whereas probes
of ⇢̂A only provide information about averages of ensem-
ble observables, by studying the full distribution of states
directly, we probe higher-order fluctuations as well.
To elucidate this distinction, and reveal the emergence

of the random statistical distribution of the projected
ensemble, we employ a Rydberg analog quantum simu-
lator33–35, implemented with alkaline-earth atoms36–39,
which provides high fidelity preparation, evolution, and
readout35 (Ext. Data Fig. 1, Methods). After a variable
evolution time, we perform site-resolved readout in a
fixed measurement basis, yielding experimentally mea-
sured bitstrings, z, which we bipartition into bitstrings
zA and zB for various choices of subsystems A and B,
respectively (Methods).
Hamiltonian parameters are chosen such that, after a

short settling time, themarginal probability of measuring
a given zA (while ignoring the complementary zB) agrees
with the prediction from ⇢̂A being a maximally mixed
state. In the language of quantum thermalization15,40–45,
this prediction is equivalent to saying ⇢̂A has reached
an equilibrium at infinite e↵ective temperature with the
complement B as an e↵ective, intrinsic bath15,16,46. For
instance, for a single-qubit in A such a reduced density
operator equilibrated at infinite e↵ective temperature ap-
pears as ⇢̂A = 1

2

�
|0ih0| + |1ih1|

�
, with a marginal prob-

ability of finding the qubit in state |0i, p(zA = 0), of
1/DA = 0.5, (where DA = 2 is the local dimension of A).
As shown in Fig. 2a, after a short transient period the
experimentally measured probabilities, p(zA = 0) (grey
squares), equilibrate in agreement with this prediction;
we note that post-selection is applied in accordance with
the Rydberg blockade constraint (Methods).
We contrast this equilibration, however, with the dy-

namics of conditional probabilities, p(zA|zB), of mea-
suring a given zA conditioned on finding an accom-
panying measurement outcome in the intrinsic bath,
zB ; note the marginal probability for finding zA is the
weighted average over conditional probabilities, p(zA) =P

zB
p(zB)p(zA|zB). More generally, while p(zA) yields

information of the reduced density operator, such condi-
tional probabilities yield signatures of the projected en-
semble, as p(zA|zB) = |hzA| A(zB)i|2. In Fig. 2a, we plot
numerically simulated p(zA = 0|zB) (grey lines), with se-
lected traces highlighted in color with corresponding ex-
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Fig. 1 | Random pure state ensembles from
Hamiltonian dynamics. a, A thought experiment,
consisting of a programmable device producing arbitrary
quantum states | ji through unitary operations Ûj , where j

enumerates over di↵erent program setting. b, Repeatedly
applying explicitly randomized unitary evolution to an
initial state | 0i produces an ensemble of pure quantum
states | ji (blue arrows) which is distributed near-uniformly
over the Hilbert space, H (grey sphere), a random state
ensemble. c, Here we demonstrate a new approach to
creating random state ensembles based on only a single
instance of time-independent Hamiltonian evolution. An
initial product state evolves under a Hamiltonian, Ĥ, before
site-resolved projective measurement in the computational
basis {|0i, |1i}. We bipartition the system into two
subsystems A and B, and analyze the conditional
measurement outcomes in subsystem A, zA, given a specific
result zB from the complement B. These outcomes are
described by the projected ensemble, a pure state ensemble
in A, {| A(zB)i}, realized through measurement of B. d, As
an example for when A consists of a single qubit, conditional
single-qubit quantum states | A(zB)i are visualized on a
Bloch sphere for all possible zB bitstrings. e, Numerical
simulations of our experimental system show that the
distribution of the conditional pure state ensemble in A

changes during evolution into a near-uniform form, with
selected states highlighted to demonstrate their late-time
divergence despite similar initial conditions.

A, and its complement B (Fig. 1c). Explicitly keeping
track of measurement results in B, which are bitstrings of
the form e.g. zB = 100 · · · 010, provides a full description
of the total system state as

| i =
X

zB

p
p(zB)| A(zB)i ⌦ |zBi, (1)

where p(zB) is the probability of measuring a given bit-
string in B, and | A(zB)i is a pure quantum state in A

conditioned on the measurement outcome in B. Thus, for
each possible zB , there is a well-defined pure state in A,

the set of all of which is generally not orthogonal. To-
gether these states, | A(zB)i, and their respective prob-
abilities, p(zB), form what we term the projected ensem-
ble17 (Fig. 1d); similar concepts also enter the definition
of localizable entanglement31,32, and in the concept of
conditional wavefunctions33,34. By tracking the time evo-
lution of the projected ensemble through both the states
and probabilities which compose it, we can probe for sig-
natures of the ensemble approaching a Haar-random dis-
tribution (Fig. 1e).
We stress that this concept is distinct from typical

studies of equilibration in quantum many-body systems.
There, the central object of interest is the reduced density
operator on A, ⇢̂A = TrB(⇢̂), found from tracing out B

from the full density operator ⇢̂. The reduced density op-
erator can be constructed by averaging over the projected
ensemble states, ⇢̂A =

P
zB

p(zB)| A(zB)ih A(zB)|, but
as such can only provide information on the mean of en-
semble observables, and never on the actual ensemble
distribution itself.
To elucidate the importance of this distinction and

reveal the emergence of random statistical properties
of the projected ensemble, we employ a Rydberg ana-
log quantum simulator28–30, implemented with alkaline-
earth atoms35–38, which provides high fidelity prepara-
tion, evolution, and readout30 (Ext. Data Fig. 1, Meth-
ods). After a variable evolution time, we perform site-
resolved readout in a fixed measurement basis, yielding
experimentally measured bitstrings, z, which we biparti-
tion into bitstrings zA and zB (Methods).
Hamiltonian parameters are chosen such that, after a

short settling time, the marginal probability, p(zA), of
measuring a given zA (while ignoring the complementary
zB) agrees with the prediction from ⇢̂A being a maxi-
mally mixed state. In the language of quantum thermal-
ization15,39–44, this prediction is equivalent to saying ⇢̂A
has reached an equilibrium at infinite e↵ective temper-
ature with the complement B as an e↵ective, intrinsic
bath15,16,45. For a single qubit in A, such a reduced den-
sity operator is ⇢̂A = 1

2

�
|0ih0| + |1ih1|

�
: the qubit has a

probability of being in state |0i of p(zA=0) = 1/DA =
1/2, where DA = 2 is the local dimension of A. As
shown in Fig. 2a, after a short transient period the experi-
mentally measured probabilities, p(zA=0) (grey squares),
equilibrate in agreement with this prediction. We note
that post-selection is applied in accordance with the Ry-
dberg blockade constraint (Methods).
We now contrast this equilibration with the dynam-

ics of conditional probabilities, p(zA|zB), of measur-
ing a given zA conditioned on finding an accompany-
ing measurement outcome in the intrinsic bath, zB .
We note the marginal probability for finding zA is the
weighted average over conditional probabilities, p(zA) =P

zB
p(zB)p(zA|zB). More generally, while p(zA) yields

information of the reduced density operator, such con-
ditional probabilities yield signatures of the projected
ensemble, as p(zA|zB) = |hzA| A(zB)i|2. In Fig. 2a, we
plot numerically simulated p(zA=0|zB) in grey, with se-

Full counting statistics:

x

x

Errors

decoherence:
‘concentration’

exp(�
D
p)

<latexit sha1_base64="2IVVrIh3akLySmxppI50yRgz9eI=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoMQD4bdKOgxqAePEcwDNkuYnfQmQ2Z3hplZMSz5DC8eFPHq13jzb5w8DppY0FBUddPdFUrOtHHdbye3srq2vpHfLGxt7+zuFfcPmlqkikKDCi5UOyQaOEugYZjh0JYKSBxyaIXDm4nfegSlmUgezEhCEJN+wiJGibGSjzvwJMtnt1iedoslt+JOgZeJNyclNEe9W/zq9ARNY0gM5URr33OlCTKiDKMcxoVOqkESOiR98C1NSAw6yKYnj/GJVXo4EspWYvBU/T2RkVjrURzazpiYgV70JuJ/np+a6CrIWCJTAwmdLYpSjo3Ak/9xjymgho8sIVQxeyumA6IINTalgg3BW3x5mTSrFe+8Ur2/KNWu53Hk0RE6RmXkoUtUQ3eojhqIIoGe0St6c4zz4rw7H7PWnDOfOUR/4Hz+AGizkAc=</latexit>

Porter-Thomas
’anti-concentration’

Large D Projective 
measurement

pj(z) = |h j |zi|2
<latexit sha1_base64="pm3DvJ6z/9u0sZb00JzXcCtbAwA=">AAACC3icbVDLTgIxFO3gC/GFunTTQExwQ2bQRDcmRDcuMZFHwoyTTilQ6HSatmPCa+/GX3HjQmPc+gPu/BsLzELBk9zk9Jx703tPIBhV2ra/rdTK6tr6Rnozs7W9s7uX3T+oqSiWmFRxxCLZCJAijHJS1VQz0hCSoDBgpB70r6d+/YFIRSN+pweCeCHqcNqmGGkj+dmc8HuF4cnl2GWIdxiBrlDU742Hrpy9x/clP5u3i/YMcJk4CcmDBBU/++W2IhyHhGvMkFJNxxbaGyGpKWZkknFjRQTCfdQhTUM5ConyRrNbJvDYKC3YjqQpruFM/T0xQqFSgzAwnSHSXbXoTcX/vGas2xfeiHIRa8Lx/KN2zKCO4DQY2KKSYM0GhiAsqdkV4i6SCGsTX8aE4CyevExqpaJzWizdnuXLV0kcaXAEcqAAHHAOyuAGVEAVYPAInsEreLOerBfr3fqYt6asZOYQ/IH1+QPlQZr3</latexit>

p j
(z

=
01
0.
..
10
1)

<latexit sha1_base64="kvndxg9AzcAjL+X7Jkr2wvuQqWo=">AAAB+XicbVDLSgMxFM3UV62vUZdugkWomyFRQTdC0Y3LCvYB7TBk0rSNzWSGJFOoQ//EjQtF3Pon7vwb03YW2nrgwuGce7n3njARXBuEvp3Cyura+kZxs7S1vbO75+4fNHScKsrqNBaxaoVEM8ElqxtuBGslipEoFKwZDm+nfnPElOaxfDDjhPkR6Uve45QYKwWumwSPladrhJHneRjh08AtIw/NAJcJzkkZ5KgF7lenG9M0YtJQQbRuY5QYPyPKcCrYpNRJNUsIHZI+a1sqScS0n80un8ATq3RhL1a2pIEz9fdERiKtx1FoOyNiBnrRm4r/ee3U9K78jMskNUzS+aJeKqCJ4TQG2OWKUSPGlhCquL0V0gFRhBobVsmGgBdfXiaNMw+fe2f3F+XqTR5HERyBY1ABGFyCKrgDNVAHFIzAM3gFb07mvDjvzse8teDkM4fgD5zPH+vbkT0=</latexit>

Set of states uniformly covering the Hilbert space {| ji, j = 1, ...,M}
<latexit sha1_base64="8+P9nKSuA/Df/BKPlXQLrOZI3SE=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwUUJSBd0IRTduhAr2AU0Ik+mknXYyCTMTocRu3fgrblwo4tY/cOffOG2z0NYDFw7n3Mu99wQJo1LZ9rdRWFpeWV0rrpc2Nre2d8zdvaaMU4FJA8csFu0AScIoJw1FFSPtRBAUBYy0guHVxG/dEyFpzO/UKCFehHqchhQjpSXfhG4GH9xEUn/gCsR7jFTg4MKpQMuyKvDGHftm2bbsKeAicXJSBjnqvvnldmOcRoQrzJCUHcdOlJchoShmZFxyU0kShIeoRzqachQR6WXTT8bwSCtdGMZCF1dwqv6eyFAk5SgKdGeEVF/OexPxP6+TqvDcyyhPUkU4ni0KUwZVDCexwC4VBCs20gRhQfWtEPeRQFjp8Eo6BGf+5UXSrFrOiVW9PS3XLvM4iuAAHIJj4IAzUAPXoA4aAINH8AxewZvxZLwY78bHrLVg5DP74A+Mzx82vpgU</latexit>

Random state ensembles
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Random state ensembles from temporal sampling
What about sampling from different evolution times?
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Concentration effect due to decoherence



Random state ensembles from temporal sampling
What about sampling from different evolution times?
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‘temporal ensemble’

Are these states actually randomly distributed?
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But: probabilities are fixed

Temporal sampling -> random phase ensemble

Energy eigenstates

No! At best, phases are random

Preliminary!

~ some signatures of random ensembles



Random state ensembles from temporal sampling
What about sampling from different evolution times?
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Ergodic many-body dynamics forms 
a ‘’random phase ensemble”

1) Full counting statistics is Porter-Thomas/anti-concentrated (for generic measurement)

2) 2nd moment -> Swap operator -> Benchmarking possible

⇢(2) = ⇢(1) ⌦ ⇢(1)(1̂ + Ŝ)� �̂(2)
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Rydberg Mixed Ising XXZ Hubbard …

Universal

Mark, et al., arXiv:2205.12211 (2022)  

Preliminary!
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Measurement-induced generation

Thought experiment:
1) Projective measurements in B
2) For each outcome, we define a state in A
3) Defines an ensemble of states (the “projected ensemble”) at a fixed time

2

Fig. 1 | Random pure state ensembles from
Hamiltonian dynamics. a, A thought experiment,
consisting of a programmable device producing arbitrary
quantum states | ji through unitary operations Uj , where j

enumerates over di↵erent program setting. b, Repeatedly
applying explicitly randomized unitary evolution to an
initial state | 0i produces an ensemble of pure quantum
states | ji (blue arrows) which is distributed near-uniformly
over the Hilbert space, H (grey sphere), a random state
ensemble. c, Here we demonstrate a new approach to
creating random state ensembles based on only a single
instance of time-independent Hamiltonian evolution. An
initial product state evolves under a Hamiltonian, Ĥ, before
site-resolved projective measurement in the computational
basis {|0i, |1i}. We bipartition the system into two
subsystems A and B of length LA and LB , respectively, and
analyze the conditional measurement outcomes in subsystem
A, zA, given a specific result zB from the complement B.
These outcomes are described by the projected ensemble, a
pure state ensemble in A, {| A(zB)i}, realized through
measurement of B. d, As an example, when LA = 1,
conditional single-qubit quantum states | A(zB)i are
visualized on a Bloch sphere for all possible zB bitstrings. e,
Numerical simulations of our experimental system show that
the distribution of the conditional pure state ensemble in A

changes during evolution into a near-random form, with
selected states highlighted to demonstrate their late-time
divergence despite similar initial conditions.

description of the total system state as

| i =
X

zB

p
p(zB)| A(zB)i ⌦ |zBi, (1)

where p(zB) is the probability of measuring a given bit-
string in B, and | A(zB)i is a pure quantum state in A

conditioned on the measurement outcome in B. Thus, for
each possible zB , there is a well-defined pure state in A.
On aggregate these states and their respective probabili-
ties, p(zB), form what we term the projected ensemble18

(Fig. 1d); similar concepts also enter the definition of lo-

calizable entanglement29,30, and in the concept of condi-
tional wavefunctions31,32. By tracking the time evolution
of the projected ensemble through both the states and
probabilities which compose it, we can probe for signa-
tures of the ensemble approaching a Haar-random distri-
bution (Fig. 1e).
We stress that this concept is distinct from typi-

cal studies of equilibration in quantum many-body sys-
tems. There, the central object of interest is the re-
duced density operator on A, ⇢̂A = TrB(⇢̂), found
from tracing out B from the full density operator ⇢̂.
Such a reduced density operator can be constructed
by averaging over the projected ensemble states, ⇢̂A =P

zB
p(zB)| A(zB)ih A(zB)|, but whereas probes of ⇢̂A

only provide information about averages of ensemble ob-
servables, by studying the full ensemble of states, we
probe higher-order fluctuations as well.
To elucidate this distinction, and reveal the emergence

of the random statistical distribution of the projected
ensemble, we employ a Rydberg analog quantum simu-
lator33–35, implemented with alkaline-earth atoms36–39,
which provides high fidelity preparation, evolution, and
readout35 (Ext. Data Fig. 1, Methods). After a vari-
able evolution time, we perform site-resolved readout in
a fixed measurement basis, yielding experimentally mea-
sured bitstrings, z. To probe projected ensembles for var-
ious possible subsystems A and complements B, we bi-
partition these into bitstrings zA and zB (Methods).
Hamiltonian parameters are chosen such that, after a

short settling time, themarginal probability of measuring
a given zA (while ignoring the complementary zB) agrees
with the prediction from ⇢̂A being a maximally mixed
state. In the language of quantum thermalization15,40–45,
this prediction is equivalent to saying ⇢̂A has reached
an equilibrium at infinite e↵ective temperature with the
complement B as an e↵ective, intrinsic bath15,16,46. For
a single qubit in A, such a reduced density operator
is ⇢̂A = 1

2

�
|0ih0| + |1ih1|

�
: the qubit has a probabil-

ity of being in state |0i of p(zA = 0) = 1/DA = 0.5,
where DA = 2 is the local dimension of A. As shown in
Fig. 2a, after a short transient period the experimentally
measured probabilities, p(zA = 0) (grey squares), equi-
librate in agreement with this prediction; we note that
post-selection is applied in accordance with the Rydberg
blockade constraint (Methods).
We contrast this equilibration with the dynamics of

conditional probabilities, p(zA|zB), of measuring a given
zA conditioned on finding an accompanying measurement
outcome in the intrinsic bath, zB ; note the marginal
probability for finding zA is the weighted average over
conditional probabilities, p(zA) =

P
zB

p(zB)p(zA|zB).
More generally, while p(zA) yields information of the
reduced density operator, such conditional probabilities
yield signatures of the projected ensemble, as p(zA|zB) =
|hzA| A(zB)i|2. In Fig. 2a, we plot numerically simulated
p(zA = 0|zB) (grey lines), with selected traces (high-
lighted in color) and their corresponding experimental
data (circle markers). We find that the conditional prob-
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Fig. 1 | Random pure state ensembles from
Hamiltonian dynamics. a, A thought experiment,
consisting of a programmable device producing arbitrary
quantum states | ji through unitary operations Uj , where j

is a program setting. b, Repeatedly applying explicitly
randomized unitary evolution to an initial state | 0i

produces an ensemble of pure quantum states | ji (blue
arrows) which is distributed close-to uniformly over the
Hilbert space, H (grey sphere), a random state ensemble. c,
Here we demonstrate a new approach to creating random
state ensembles based on only a single instance of
time-independent Hamiltonian evolution. An initial product
state evolves under a Hamiltonian, Ĥ, before site-resolved
projective measurement in the computational basis {|0i,
|1i}. We bipartition the system into two subsystems A and
B of length LA and LB , respectively, and analyze the
conditional measurement outcomes in subsystem A, zA,
given a specific result zB from the complement B. These
outcomes are described by the projected ensemble, a pure
state ensemble in A, {| A(zB)i}, realized through
measurement of B. d, As an example, when LA = 1,
conditional single-qubit quantum states | A(zB)i are
visualized on a Bloch sphere for all possible zB bitstrings. e,
Numerical simulations of our experimental system show that
the distribution of the conditional pure state ensemble in A

changes during evolution into a close-to random form, with
selected states highlighted to demonstrate their late-time
divergence despite similar initial conditions.

of the total system state as

| i =
X

zB

p
p(zB)| A(zB)i ⌦ |zBi, (1)

where p(zB) is the probability of measuring a given bit-
string in B, and | A(zB)i is a pure quantum state in A

conditioned on the measurement outcome in B. Thus,
for each possible zB , there is a well-defined pure state in
A. On aggregate these states and their respective prob-
abilities, p(zB), form what we term the projected ensem-
ble18 (Fig. 1d); similar concepts also enter the defini-

tion of localizable entanglement29,30, and in the concept
of conditional wavefunctions31,32. By tracking the evolu-
tion of the states and probabilities of the projected en-
semble as a function of time, we can probe for signatures
of the ensemble approaching a Haar-random distribution
(Fig. 1e).
We stress that this concept is distinct from typical

studies of equilibration in quantum many-body systems
where the central object of interest is the reduced den-
sity operator in A, ⇢̂A = TrB(⇢̂), found from trac-
ing out B from the full density operator ⇢̂. Such a re-
duced density operator can be directly constructed from
a weighted average over the projected ensemble states,
⇢̂A =

P
zB

p(zB)| A(zB)ih A(zB)|, but whereas probes
of ⇢̂A only provide information about averages of ensem-
ble observables, by studying the full distribution of states
directly, we probe higher-order fluctuations as well.
To elucidate this distinction, and reveal the emergence

of the random statistical distribution of the projected
ensemble, we employ a Rydberg analog quantum simu-
lator33–35, implemented with alkaline-earth atoms36–39,
which provides high fidelity preparation, evolution, and
readout35 (Ext. Data Fig. 1, Methods). After a variable
evolution time, we perform site-resolved readout in a
fixed measurement basis, yielding experimentally mea-
sured bitstrings, z, which we bipartition into bitstrings
zA and zB for various choices of subsystems A and B,
respectively (Methods).
Hamiltonian parameters are chosen such that, after a

short settling time, themarginal probability of measuring
a given zA (while ignoring the complementary zB) agrees
with the prediction from ⇢̂A being a maximally mixed
state. In the language of quantum thermalization15,40–45,
this prediction is equivalent to saying ⇢̂A has reached
an equilibrium at infinite e↵ective temperature with the
complement B as an e↵ective, intrinsic bath15,16,46. For
instance, for a single-qubit in A such a reduced density
operator equilibrated at infinite e↵ective temperature ap-
pears as ⇢̂A = 1
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|0ih0| + |1ih1|
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, with a marginal prob-

ability of finding the qubit in state |0i, p(zA = 0), of
1/DA = 0.5, (where DA = 2 is the local dimension of A).
As shown in Fig. 2a, after a short transient period the
experimentally measured probabilities, p(zA = 0) (grey
squares), equilibrate in agreement with this prediction;
we note that post-selection is applied in accordance with
the Rydberg blockade constraint (Methods).
We contrast this equilibration, however, with the dy-

namics of conditional probabilities, p(zA|zB), of mea-
suring a given zA conditioned on finding an accom-
panying measurement outcome in the intrinsic bath,
zB ; note the marginal probability for finding zA is the
weighted average over conditional probabilities, p(zA) =P

zB
p(zB)p(zA|zB). More generally, while p(zA) yields

information of the reduced density operator, such condi-
tional probabilities yield signatures of the projected en-
semble, as p(zA|zB) = |hzA| A(zB)i|2. In Fig. 2a, we plot
numerically simulated p(zA = 0|zB) (grey lines), with se-
lected traces highlighted in color with corresponding ex-
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Fig. 1 | Random pure state ensembles from
Hamiltonian dynamics. a, A thought experiment,
consisting of a programmable device producing arbitrary
quantum states | ji through unitary operations Uj , where j

enumerates over di↵erent program setting. b, Repeatedly
applying explicitly randomized unitary evolution to an
initial state | 0i produces an ensemble of pure quantum
states | ji (blue arrows) which is distributed near-uniformly
over the Hilbert space, H (grey sphere), a random state
ensemble. c, Here we demonstrate a new approach to
creating random state ensembles based on only a single
instance of time-independent Hamiltonian evolution. An
initial product state evolves under a Hamiltonian, Ĥ, before
site-resolved projective measurement in the computational
basis {|0i, |1i}. We bipartition the system into two
subsystems A and B of length LA and LB , respectively, and
analyze the conditional measurement outcomes in subsystem
A, zA, given a specific result zB from the complement B.
These outcomes are described by the projected ensemble, a
pure state ensemble in A, {| A(zB)i}, realized through
measurement of B. d, As an example, when LA = 1,
conditional single-qubit quantum states | A(zB)i are
visualized on a Bloch sphere for all possible zB bitstrings. e,
Numerical simulations of our experimental system show that
the distribution of the conditional pure state ensemble in A

changes during evolution into a near-random form, with
selected states highlighted to demonstrate their late-time
divergence despite similar initial conditions.

description of the total system state as

| i =
X

zB

p
p(zB)| A(zB)i ⌦ |zBi, (1)

where p(zB) is the probability of measuring a given bit-
string in B, and | A(zB)i is a pure quantum state in A

conditioned on the measurement outcome in B. Thus, for
each possible zB , there is a well-defined pure state in A.
On aggregate these states and their respective probabili-
ties, p(zB), form what we term the projected ensemble18

(Fig. 1d); similar concepts also enter the definition of lo-

calizable entanglement29,30, and in the concept of condi-
tional wavefunctions31,32. By tracking the time evolution
of the projected ensemble through both the states and
probabilities which compose it, we can probe for signa-
tures of the ensemble approaching a Haar-random distri-
bution (Fig. 1e).
We stress that this concept is distinct from typi-

cal studies of equilibration in quantum many-body sys-
tems. There, the central object of interest is the re-
duced density operator on A, ⇢̂A = TrB(⇢̂), found
from tracing out B from the full density operator ⇢̂.
Such a reduced density operator can be constructed
by averaging over the projected ensemble states, ⇢̂A =P

zB
p(zB)| A(zB)ih A(zB)|, but whereas probes of ⇢̂A

only provide information about averages of ensemble ob-
servables, by studying the full ensemble of states, we
probe higher-order fluctuations as well.
To elucidate this distinction, and reveal the emergence

of the random statistical distribution of the projected
ensemble, we employ a Rydberg analog quantum simu-
lator33–35, implemented with alkaline-earth atoms36–39,
which provides high fidelity preparation, evolution, and
readout35 (Ext. Data Fig. 1, Methods). After a vari-
able evolution time, we perform site-resolved readout in
a fixed measurement basis, yielding experimentally mea-
sured bitstrings, z. To probe projected ensembles for var-
ious possible subsystems A and complements B, we bi-
partition these into bitstrings zA and zB (Methods).
Hamiltonian parameters are chosen such that, after a

short settling time, themarginal probability of measuring
a given zA (while ignoring the complementary zB) agrees
with the prediction from ⇢̂A being a maximally mixed
state. In the language of quantum thermalization15,40–45,
this prediction is equivalent to saying ⇢̂A has reached
an equilibrium at infinite e↵ective temperature with the
complement B as an e↵ective, intrinsic bath15,16,46. For
a single qubit in A, such a reduced density operator
is ⇢̂A = 1

2

�
|0ih0| + |1ih1|

�
: the qubit has a probabil-

ity of being in state |0i of p(zA = 0) = 1/DA = 0.5,
where DA = 2 is the local dimension of A. As shown in
Fig. 2a, after a short transient period the experimentally
measured probabilities, p(zA = 0) (grey squares), equi-
librate in agreement with this prediction; we note that
post-selection is applied in accordance with the Rydberg
blockade constraint (Methods).
We contrast this equilibration with the dynamics of

conditional probabilities, p(zA|zB), of measuring a given
zA conditioned on finding an accompanying measurement
outcome in the intrinsic bath, zB ; note the marginal
probability for finding zA is the weighted average over
conditional probabilities, p(zA) =

P
zB

p(zB)p(zA|zB).
More generally, while p(zA) yields information of the
reduced density operator, such conditional probabilities
yield signatures of the projected ensemble, as p(zA|zB) =
|hzA| A(zB)i|2. In Fig. 2a, we plot numerically simulated
p(zA = 0|zB) (grey lines), with selected traces (high-
lighted in color) and their corresponding experimental
data (circle markers). We find that the conditional prob-

Hamiltonian dynamics at a fixed time t

A

B

Haar-random moments!

3

Fig. 2 | Experimental signatures of random pure
state ensembles. a, We employ a 10-atom Rydberg
quantum simulator to perform Hamiltonian evolution
leading to quantum thermalization at infinite e↵ective
temperature (see main text for details). For a single qubit in
A, we plot the probabilities for finding the qubit in state 0
as a function of time. We first plot the marginal
probabilities p(zA = 0), which equilibrate to ⇠ 0.5 due to
thermalization with B (square markers). In contrast, we plot
conditional probabilities given a specific measured zB in B,
p(zA = 0|zB) (circle markers), which show large fluctuations
even after the marginal probability reaches a steady state;
these then diminish at late times due to decoherence e↵ects.
Such conditional probabilities are signatures of the projected
ensemble as p(zA|zB) = |hzA| A(zB)i|

2. Grey lines are
simulated trajectories of p(zA = 0|zB) for all outcomes zB ,
with a few highlighted to be compared with experimental
data (color lines and markers). Decoherence sources47 are
included for simulations after the axis break. b, Histograms,
P (p), of the probabilities p(zA = 0|zB) at intermediate
(⌦t0/2⇡ = 2.3) time; the experimental results are close to a
flat distribution, as expected from an ensemble of uniformly
distributed single-qubit states on a Bloch sphere (right). c,
However, at late (⌦t1/2⇡ = 38) time, decoherence e↵ects
have reduced the purity of the states in A, concentrating
probabilities around 1/DA = 0.5, (see main text). d,e,
Similar agreement with predictions from random state
ensembles is also seen for larger subsystem sizes of A with
higher DA values (Methods). In b-e, black lines and grey
bands are predictions and uncertainties of a DA-dimensional
uniform random ensemble; red dashed lines and blue solid
lines are from simulations with and without decoherence47,
respectively.

abilities are highly fluctuating in a seemingly chaotic
fashion with sensitive dependence on zB , even when the
marginal probability has reached a steady state. In exper-
iments, we note that these fluctuations slowly damp out
over time due to extrinsic decoherence e↵ects from cou-
pling to an external environment at very late time (right

panel, Fig. 2a), but that these decoherence e↵ects do not
appear to a↵ect the late-time marginal probability.
To analyze fluctuations quantitatively, we construct

a histogram P (p) of finding the conditional probability
p(zA|zB) in an interval [p, p+�p], with �p the bin size
(Fig. 2b). We plot such histograms for a time when fluc-
tuations are strong and decoherence e↵ects are small (t0,
Fig. 2b) as well as at very late time (t1, Fig. 2c) when de-
coherence dominates. At t0, the experimental P (p) distri-
bution is essentially flat, as predicted for a Haar-random
ensemble, up to finite-sampling fluctuations and weak
decoherence e↵ects47. Using an open-system numerical
simulation of the experimental evolution, we see these
measurement probabilities correspond to the projected
states being nearly uniformly distributed in the single-
qubit Hilbert space (Bloch spheres in Fig. 2b,c). At t1, de-
coherence e↵ects reduce the purity of projected states sig-
nificantly, leading to P (p) becoming concentrated around
1/DA = 0.5 (Fig. 2c). This indicates that the agreement
between the experimental data and the random ensem-
ble prediction in the Fig. 2b,d is a coherent phenomenon
of closed quantum system dynamics. We further validate
this in Fig. 2d,e by plotting the P (p) for subsystems with
larger Hilbert space dimensions of DA = 3 and 5 (Meth-
ods). Here, the prediction from the Haar-random distri-
bution4 is P (p) = (DA � 1)(1 � p)DA�2, which we note
in the limit DA ! 1, becomes the well-known Porter-
Thomas distribution48, P (p) = DAe

�DAp, a key signa-
ture of the formation of random state ensembles.
We further consider moments of the distributions P (p),

where the kth moment is defined as p
(k) =

P
p
p
k
P (p)

(Fig. 3a). Looking order-by-order, we find after rescal-
ing by a factor of DA · · · (DA + k � 1), moments from
both experiment and numerics quickly approach k!, the
analytical result expected from a Haar-random ensem-
ble47; again, at very late time, moments show a charac-
teristic drop, indicating sensitivity to decoherence e↵ects
(Fig. 3a, right). The convergence to k! is independent of
the details of subsystem selection, whether A is chosen
at the edge, center, or is even discontiguous (Ext. Data
Fig. 2), and universal values are also found for non-local
observables such as two-point correlators47. We stress
that while the present analysis has been carried out solely
for the projected ensemble equilibrated to infinite e↵ec-
tive temperature, signatures of similar universal behav-
ior are seen numerically for finite e↵ective temperature
cases18,47.
Having so far evaluated the projected ensemble solely

through the lens of observables, which were consis-
tent with the states being approximately randomly dis-
tributed, we now turn to directly quantify the degree
of randomness in the projected ensemble by a notion of
‘distance’ not between observables, but between the en-
sembles themselves. To do so, we compare the projected
ensemble against progressively more complex approxima-
tions to the uniformly random state ensemble, so-called
quantum state k-designs49. For the case of a single qubit,
pictured in the Fig. 3b inset, such k-designs are increas-

J. Choi*, A. L. Shaw*,  et al. arXiv:2103.03535 (2021)
Cotler*, Mark*, Huang*, et al. arXiv:2103.03536 (2021)

Governing principle: 

Ergodic many-body dynamics produces maximum 
entropy pure state ensembles from time-sampling or 
partial projective measurements.

Consequence 1): Universal fluctuations 
(beyond standard stat. mech.)

Consequence 2): Enables fidelity estimation

https://arxiv.org/pdf/2103.03535.pdf
https://arxiv.org/pdf/2103.03536.pdf


Random state ensembles
→ Many-body fidelity estimation

J. Choi*, A. L. Shaw*,  et al. arXiv:2103.03535 (2021)
Cotler*, Mark*, Huang*, et al. arXiv:2103.03536 (2021)
Mark, et al., arXiv:2205.12211 (2022)  

Soonwon Choi (MIT)
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Quantum simulator benchmarking

Time
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Pure state from theory

<latexit sha1_base64="uPFvTL/JplIEHt/CVT0dRdnP82c="></latexit>

Fidelity: F = h |⇢exp| i

Mixed state from experiment

=
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Error

Challenge: reconstructing rexp is not possible for large systems

See also work by P. Zoller & R. Blatt as well as J. Eisert
J. Choi*, A. L. Shaw*, I. S. Madjarov, X. Xie, J. P. Covey, J.S. Cotler, D. K. Mark, HY Huang, A. Kale, H, Pichler, F. G.S.L. 
Brandão, S. Choi, ME arXiv:2103.03535 (2021)

⇢exp ⇡ F | ih |+ (1� F )⇠error
<latexit sha1_base64="LY3WKoWhG9SQqJN1BdT5VBF24Rc="></latexit>

Solution: Estimate F utilizing properties of random state ensembles

https://arxiv.org/pdf/2103.03535.pdf


Fidelity estimation for analog quantum simulators
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⇡ F = h |⇢̂exp| i
for quench dynamics with ‘ergodic’ Hamiltonians 

Experiment

Target state
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Model of experiment
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Fest =
2
P

z w(z)p1(z)p0(z)P
z w(z)p0(z)

2
� 1

Noisy model serves as a cross check

J. Choi*, A. L. Shaw*,  et al. arXiv:2103.03535 (2021)
Mark, et al., arXiv:2205.12211 (2022)  

Analog quantum simulator in 1d
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Fidelity estimation for analog quantum simulators
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Model of experiment
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‘Entanglement challenge’
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Entanglement Growth vs Error Rate

Benchmarking

What about larger scale systems?

Are these experiments better than classical numerics?



Large-scale benchmarking in 1d

Preliminary! 
Numbers not final



Large-scale benchmarking 

F ⇡ pN0 exp(��(N)t)
<latexit sha1_base64="Af53ply3MX4VBarArwSRZP2AuuA=">AAACCnicbVA9SwNBEN3z2/gVtbRZDUJSGO6ioGVQECtRMB+QO8PcZhOX7N4tu3uSEFLb+FdsLBSx9RfY+W/cxCs08cHA470ZZuaFkjNtXPfLmZmdm19YXFrOrKyurW9kN7eqOk4UoRUS81jVQ9CUs4hWDDOc1qWiIEJOa2H3bOTX7qnSLI5uTF/SQEAnYm1GwFipmd0990FKFfewbLq3l9inPZk/8DsgBOQvC9gUmtmcW3THwNPES0kOpbhqZj/9VkwSQSNDOGjd8FxpggEowwinw4yfaCqBdKFDG5ZGIKgOBuNXhnjfKi3cjpWtyOCx+ntiAELrvghtpwBzpye9kfif10hM+yQYsEgmhkbkZ1E74djEeJQLbjFFieF9S4AoZm/F5A4UEGPTy9gQvMmXp0m1VPQOi6Xro1z5NI1jCe2gPZRHHjpGZXSBrlAFEfSAntALenUenWfnzXn/aZ1x0plt9AfOxzeBaZjZ</latexit>

SPAM errors 
(𝑝) ∼ 0.996)

Many-body 
error-rate

Preliminary!
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−> linear, so far



Large-scale benchmarking 

F ⇡ pN0 exp(��(N)t)
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Many-body 
error-rate

Preliminary!

X
−> linear, so far

How did we benchmark such large 
systems?



MPS-based benchmarking

𝐹>?@

Experiment

Target state
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p0(z)

Use matrix product states (MPS, TEBD): 
Exact up to some max time (even for large N)

For 𝑁 > 35 at late time
→ no exact algorithm

Preliminary!

Cross-check: 
split array



Quantum vs Classical
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Preliminary!

F>A?

Example: F~5% for N=60 for 
max entanglement entropy 
state

What classical resources are needed for a 
classical algorithm (MPS) to have higher 
fidelity/accuracy than the experiment?
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Classical resource analysis Preliminary!

Classical resources needed for 
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• Significant classical resources needed 
• Classical resources keep growing with system size 

Time ~ 3 weeks

Outlook: 2d 
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Summary

• Atom-by-atom assembly + Rydberg with alkali atoms
• ME*, Bernien*, Keesling*, Levine* et al. Science 354, 1024 (2016)
• …

• Alkaline-earth tweezer arrays:
• Arrays of AEAs and narrow line cooling

• Cooper et al. PRX 8, 041055 (2018)

• High-fidelity imaging (and long lifetime)
• Covey et al. PRL 122, 173201 (2019)

• High-fidelity Rydberg control, detection and entanglement
• Madjarov*, Covey* et al. Nature Physics 16, 857 (2020)

• ‘Tweezer clock’
• Madjarov et al. PRX 9, 041052 (2019)

• Random states and benchmarking
• Projected ensembles and benchmarking (up to N=25)

• Choi*, Shaw*, et al., arXiv:2103.03535 (2021)
• Projected ensembles theory

• Cotler*, Mark*, Huang*, et al. arXiv:2103.03536 (2021)
• Benchmarking theory

• Mark, et al., arXiv:2205.12211 (2022)  
• Temporal sampling (unpublished)
• Large-scale benchmarking (N=60, unpublished)

2

Fig. 1 | Random pure state ensembles from
Hamiltonian dynamics. a, A thought experiment,
consisting of a programmable device producing arbitrary
quantum states | ji through unitary operations Uj , where j

is a program setting. b, Repeatedly applying explicitly
randomized unitary evolution to an initial state | 0i

produces an ensemble of pure quantum states | ji (blue
arrows) which is distributed close-to uniformly over the
Hilbert space, H (grey sphere), a random state ensemble. c,
Here we demonstrate a new approach to creating random
state ensembles based on only a single instance of
time-independent Hamiltonian evolution. An initial product
state evolves under a Hamiltonian, Ĥ, before site-resolved
projective measurement in the computational basis {|0i,
|1i}. We bipartition the system into two subsystems A and
B of length LA and LB , respectively, and analyze the
conditional measurement outcomes in subsystem A, zA,
given a specific result zB from the complement B. These
outcomes are described by the projected ensemble, a pure
state ensemble in A, {| A(zB)i}, realized through
measurement of B. d, As an example, when LA = 1,
conditional single-qubit quantum states | A(zB)i are
visualized on a Bloch sphere for all possible zB bitstrings. e,
Numerical simulations of our experimental system show that
the distribution of the conditional pure state ensemble in A

changes during evolution into a close-to random form, with
selected states highlighted to demonstrate their late-time
divergence despite similar initial conditions.

of the total system state as

| i =
X

zB

p
p(zB)| A(zB)i ⌦ |zBi, (1)

where p(zB) is the probability of measuring a given bit-
string in B, and | A(zB)i is a pure quantum state in A

conditioned on the measurement outcome in B. Thus,
for each possible zB , there is a well-defined pure state in
A. On aggregate these states and their respective prob-
abilities, p(zB), form what we term the projected ensem-
ble18 (Fig. 1d); similar concepts also enter the defini-

tion of localizable entanglement29,30, and in the concept
of conditional wavefunctions31,32. By tracking the evolu-
tion of the states and probabilities of the projected en-
semble as a function of time, we can probe for signatures
of the ensemble approaching a Haar-random distribution
(Fig. 1e).
We stress that this concept is distinct from typical

studies of equilibration in quantum many-body systems
where the central object of interest is the reduced den-
sity operator in A, ⇢̂A = TrB(⇢̂), found from trac-
ing out B from the full density operator ⇢̂. Such a re-
duced density operator can be directly constructed from
a weighted average over the projected ensemble states,
⇢̂A =

P
zB

p(zB)| A(zB)ih A(zB)|, but whereas probes
of ⇢̂A only provide information about averages of ensem-
ble observables, by studying the full distribution of states
directly, we probe higher-order fluctuations as well.
To elucidate this distinction, and reveal the emergence

of the random statistical distribution of the projected
ensemble, we employ a Rydberg analog quantum simu-
lator33–35, implemented with alkaline-earth atoms36–39,
which provides high fidelity preparation, evolution, and
readout35 (Ext. Data Fig. 1, Methods). After a variable
evolution time, we perform site-resolved readout in a
fixed measurement basis, yielding experimentally mea-
sured bitstrings, z, which we bipartition into bitstrings
zA and zB for various choices of subsystems A and B,
respectively (Methods).
Hamiltonian parameters are chosen such that, after a

short settling time, themarginal probability of measuring
a given zA (while ignoring the complementary zB) agrees
with the prediction from ⇢̂A being a maximally mixed
state. In the language of quantum thermalization15,40–45,
this prediction is equivalent to saying ⇢̂A has reached
an equilibrium at infinite e↵ective temperature with the
complement B as an e↵ective, intrinsic bath15,16,46. For
instance, for a single-qubit in A such a reduced density
operator equilibrated at infinite e↵ective temperature ap-
pears as ⇢̂A = 1

2

�
|0ih0| + |1ih1|

�
, with a marginal prob-

ability of finding the qubit in state |0i, p(zA = 0), of
1/DA = 0.5, (where DA = 2 is the local dimension of A).
As shown in Fig. 2a, after a short transient period the
experimentally measured probabilities, p(zA = 0) (grey
squares), equilibrate in agreement with this prediction;
we note that post-selection is applied in accordance with
the Rydberg blockade constraint (Methods).
We contrast this equilibration, however, with the dy-

namics of conditional probabilities, p(zA|zB), of mea-
suring a given zA conditioned on finding an accom-
panying measurement outcome in the intrinsic bath,
zB ; note the marginal probability for finding zA is the
weighted average over conditional probabilities, p(zA) =P

zB
p(zB)p(zA|zB). More generally, while p(zA) yields

information of the reduced density operator, such condi-
tional probabilities yield signatures of the projected en-
semble, as p(zA|zB) = |hzA| A(zB)i|2. In Fig. 2a, we plot
numerically simulated p(zA = 0|zB) (grey lines), with se-
lected traces highlighted in color with corresponding ex-

https://arxiv.org/pdf/2103.03535.pdf
https://arxiv.org/pdf/2103.03536.pdf


Outlook tweezer arrays

1) Quantum computing

2) Quantum simulation 
(quantum many-body physics)

3) Quantum metrology
(use quantum states/systems for precision measurement)

Tweezer arrays are a forefront platform for 
• Quantum Simulation (→ quantum advantage)
• Metrology (→ competetive atomic clocks & quantum metrology)

What about quantum computing? 
• Mid-circuit readout & feedback
• Higher-fidelity two-qubit gates
• Scaling up
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