Black Holes
and
the nature of space time

Juan Martín Maldacena

Carl P. Feinberg professor
Institute for Advanced Study
General relativity

I do not think so…

They are unavoidable

Chandrasekar

Oppenheimer, Snyder

Penrose
They are not black

They imply that quantum mechanics is incompatible with gravity

Incompatible?
String theory

Black holes as seen from the outside are compatible with quantum mechanics

Relation between quantum mechanics and spacetime geometry

Still several puzzles with the interior
Principle of Relativity

- An observer travelling with constant velocity observes the same laws of physics as one at rest

Galileo
- Two observers travelling with constant velocity observe the same laws of physics.
- There is a maximum velocity for signal propagation: The speed of light is \(300,000\) Km/s.
Both measure the same speed of light

Time flows at different “speed” for each observer
The twin “paradox”

Felt some acceleration!
The twin “paradox”

Suppose that the rule is that when they meet again they would both die.
Who would you rather be?

- Constant velocity
- Changing velocity

Even elementary particles prefer this → this is why they move in straight lines

Principle of maximal life (experienced time)
Lesson:

Space and time form a single entity: spacetime

The time we measure depends on how we move.

Particles move in straight lines to maximize their lifetime.
Gravity

Aristotle: Heavier objects fall faster

Galileo: Everything falls in the same way (once we remove the air resistance)
Einstein’s happy thought:

When you fall freely gravity “disappears”

New physics law: “Equivalence principle”

Going with the flow feels easier
Feels weightless
General Relativity

✓ Gravity is due to the geometry of space-time.

✓ A heavy object curves the space-time around it.

✓ A second particle follows the maximum lifetime trajectory in the space time.

Einstein 1915
Gravity changes the flow of time

Time flows differently for two observers in a gravitational field.

Upper floor

Time flows more slowly

(A part in 10^{15})

Lower floor
Massive body
Karl Schwarzschild found the spacetime geometry outside a massive spherical body.

This geometry tells us how time flows.

Flow of time

Feels weight
Feels larger weight
Feels infinite weight

Star

Exterior

Black hole radius

1
They are not falling freely!

What if they fell freely?
The geometry continues behind the horizon

We would not feel anything special when we cross the horizon

But we cannot avoid crashing into the singularity = end of time

Singularity is in the future. Interior is not “inside” but “into the future”. It is a crushing future, but it is hidden from the outside.
The fish can swim with maximum velocity c. If they go into the region where the river flows at a speed greater than c, they fall into the waterfall.

They do not feel anything special when they cross the region where the speed of the river is equal to c.
Some lessons

1) Once you cross the horizon, you cannot get out!

2) A star can collapse into a black hole.

3) There are objects in the sky that seem to be black holes.
Real black holes

1) Produced by the collapse of massive stars

 (size $\sim 10-200$ km)

2) Black holes at the center of galaxies

 (size \sim size of the solar system)
How do we see them?

- Matter falls in, heats up and emits light or other radiation.

- See the gravity waves produced when two black holes collide.
Black hole collisions produce gravity waves
Black holes at the centers of galaxies
M87 Galaxy
M87 Galaxy
M87 center, from the Event Horizon Telescope
Many galaxies similar to ours have these black holes at the center.
The black hole at the center of our galaxy

Andrea Ghez, Reinhard Genzel
We are in a golden era for black hole observations!
However, this talk will be about some theoretical aspects of black holes.
First we will mention interesting theoretical aspects of black holes
The final shape of the black hole is independent on how it formed. It is only characterized by its mass, its angular rotation velocity and its charge.
The ancients thought that heavenly bodies were perfect spheres.

We know that planets and stars are not perfect spheres.

But a non-rotating black hole is supposed to be a perfect sphere!
Area law

The area of the horizon always increases.

\[A > A_1 + A_2 \]

The total mass of the black holes decreases, \(M < M_1 + M_2 \).

Hawking

Gravitational waves
We have discussed black holes according to Einstein’s theory of general relativity, which is a classical theory.

When we include quantum mechanics we find a new surprise:
White Black holes!

The laws of quantum mechanics imply that black holes emit thermal radiation.

The temperature increases as the size decreases.

Temperatures for black holes of various masses:

\[T_{\text{sun}} = 0.000003 \, ^\circ \text{K} \] (This temperature is too small for astrophysical black holes)

\[T_{M=\text{continent}} = 7000 \, ^\circ \text{K} \] (white light) has the size of a bacterium.

Hawking 1974
Experimental evidence

• None for the case of black holes.

• But there is a similar effect in cosmology. When we have a fast expanding universe there is a temperature.

• This is our current best explanation, via inflation, for the origin of the primordial fluctuations (which are observed the CMB).
Why?
Relativistic quantum mechanics

- Particles can be created and destroyed.
The vacuum

- Energies should be positive.

You can have negative energy for a short enough time.

But the particles should annihilate again soon otherwise they will be in trouble!

In flat space: there is no net particle creation.
The vacuum

In the presence of a horizon

Net particle creation.
The life of a black hole

As it emits radiation it loses mass. It has a finite lifetime

Lifetimes of various black holes:

A black hole of the mass of the sun or the earth would live much longer than the age of the universe

A black hole with an ordinary mass (say 100 Kg) would evaporate in a very tiny fraction of a second. Worse than a nuclear bomb!

A black hole of a mass of 10^{12} Kg produced at the beginning of the Big Bang would be evaporating now.

There could be very small black holes produced in particle accelerators would decay very quickly
Temperature

Heat is due to the microscopic motion of the constituents of matter
Heat and entropy (disorder)

Entropy \rightarrow number of configurations of the constituents

First law of thermodynamics: Gives us the entropy if we know the energy and the temperature

Bekenstein, Hawking

\[S = \frac{\text{Area}}{4G_N \hbar} \]

\[S = \frac{\text{Area}}{(10^{-33} \text{ cm})^2} \]

Area law \rightarrow second law of thermodynamics (entropy increases)
What are the constituents of a black hole?

- Microscopic constituents of spacetime
- Structure and nature of spacetime

For the air: the air appears to be uniform, but at the molecular scales it is not uniform, it consists of random moving molecules.

For black holes: they were classically perfect "spheres", but quantum mechanically we conclude they should not be totally uniform… What are the "atoms of spacetime"?
These results have inspired a certain hypothesis
Black holes as quantum systems

• A black hole seen from the outside can be described as a quantum system with S degrees of freedom (qubits). $S = \text{Area}/4$ ($l_p = 1$)
• It evolves according to unitary evolution, seen from outside.
Not everyone agreed with this.

Can’t be true!
Information loss

We can form a black hole in many different ways but it always evaporates in the same way.

Quantum mechanics → Thermal aspects arise due to an approximation. There must be subtle differences in the outgoing radiation which carry the information of how the black hole was made.
Who is right?
We need a theory that puts together quantum mechanics and gravity

String theory
String theory

(1968 – 1986 – 90’s -)

Is a theory under construction

Is a theory of quantum gravity = quantum mechanics of spacetime.

It reduces to Einstein’s theory under ordinary circumstances (low energies or long distances).

It can describe in a complete way certain simple universes with negative curvature.
Holography

We can describe the interior of certain spacetimes in terms of a theory on their boundary.

The boundary theory is a theory of strongly interacting particles, without gravity.

JM Gubser, Klebanov, Polyakov, Witten

Conjecture! (with evidence)
Gravity in the interior \rightarrow Described by interacting particles on the boundary.
Black holes correspond to a large number of particles on the boundary. Temperature and entropy are related to the motion of particles on the boundary.
• The theory on the boundary obeys the rules of quantum mechanics
• So does the black hole in the interior
• Black holes are consistent with quantum mechanics*.

* If you accept the holographic conjecture
Emergent geometry

Quantum system lives at the boundary

The gravitational spacetime has one more dimension
Emergent geometry

A verbal analogy
If a man does not keep pace with his companions, perhaps it is because he hears a different drummer.
If a man does not keep pace with his companions, perhaps it is because he hears a different drummer
If a man does not keep pace with his companions, perhaps it is because he hears a different drummer
If a man does not keep pace with his companions, perhaps it is because he hears a different drummer
If a man does not keep pace with his companions, perhaps it is because he hears a different drummer
If a man does not keep pace with his companions, perhaps it is because he hears a different drummer.
We study various aspects of wormholes that are made traversable by an interaction between the two asymptotic boundaries. We concentrate on the case of nearly-AdS2 gravity and discuss a very simple mechanical picture for the gravitational dynamics. We derive a formula for the two sided correlators that includes the effect of gravitational backreaction, which limits the amount of information we can send through the wormhole. We emphasize that the process can be viewed as a state of the quantum system.

State of the quantum system.

Bulk space: Characterizes the large correlations.

Curved space: Extra long distance correlations \rightarrow particles
What is a black hole in the spacetime?
If a man does not keep pace with his companions, perhaps it is because he hears a different drummer.
If a man does not keep pace with its companions, perhaps it is because she hears a different lecture.

We lost longer distance correlations.
More changes...

If a man my nice mother pace with its companions the moon tells me she writes a different lecture.

Black hole grows
Black hole grows.

Area = ignorance.

Area growth → Changes are more likely to mess up a sentence if we edit it randomly.
If the changes were produced by a reversible process, e.g. an encryption algorithm.

Then we can reverse the process and recover the original sentence.
Laws of physics on the boundary \(\rightarrow\) change the state of the boundary theory.

Analogous to an encryption process, it is reversible.

We can undo the formation of the black hole (in principle) and recover the original information.
I will like to end with a somewhat philosophical comment about our methodology.
The role of thought experiments

• Thought experiments were important in developing general relativity.
• We will discuss one example.
The falling elevator
Inside perspective: No gravity
Inside perspective: Send a pulse of light
Inside perspective:
Outside perspective

Light falls!!

Height

Time
Deflection of light by the sun
Our thought experiment
Two perspectives for an observer falling into a black hole

• Freely falling → nothing happens

• Outside perspective?
Static observer, including Hawking radiation.

Flow of time

1

Black hole radius

Feels an infinite temperature

Feels a larger temperature

Feels a temperature

Exterior

r
• For the outside observer, somebody who falls in gets burnt by Hawking radiation at the horizon.
• We again have two different perspectives.
• Reconciling them has lead to some of the ideas that I mentioned before, such as holography.
• Ideas of quantum entanglement play an important role.
For falling light

- Einstein did not get the right value for the deflection angle from his initial thought experiment alone.
- The right value came from the complete theory of general relativity.
For quantum gravity

- We do not have a full theory of quantum gravity, valid for any process.
- But we think that the lessons we are learning are useful steps for developing this theory. And there are deep connections between different areas of physics.
- We hope that once we find the right theory there will be predictions that can be more easily checked, than the black hole ones we discussed.
Conclusions

✓ Black holes are fascinating objects where the geometry of spacetime is deformed in a dramatic way.

✓ Black holes and quantum mechanics give rise to interesting theoretical challenges.

✓ String theory can describe black holes in a consistent way (from the outside).

✓ Spacetime is an effective (approximate) concept which arises from more elementary particles living on the boundary of spacetime.

✓ Entanglement plays a crucial role in determining the structure of spacetime.
The end

Thank you!
Extra slides
Entanglement and geometry
Entanglement and geometry

• The quantum mechanical property of entanglement plays an important role in constructing the spacetime geometry.

• We will discuss just one example.
Two sided Schwarzschild solution

Simplest spherically symmetric solution of pure Einstein gravity (with no matter)

Eddington, Lemaitre, Einstein, Rosen, Finkelstein, Kruskal
Wormhole interpretation.

There are two asymptotic regions. The blue spatial slice contains the Einsteint-Rosen bridge connecting the two regions not in causal contact and information cannot be transmitted across the bridge. This can easily seen from the Penrose diagrams and is consistent with the fact that entanglement does not imply nontlocal signal propagation.

(a) (b)

Figure z: Another representation of the blue spatial slice of figure y. It contains a neck connecting two asymptotically flat regions. Here we have two distant entangled black holes in the same space. The horizons are identified as indicated. This is not an exact solution of the equations but an approximate solution where we can ignore the small force between the black holes.

All of this is well known but what may be less familiar is a third interpretation of the eternal Schwarzschild black hole. Instead of black holes on two disconnected sheets, we can consider two very distant black holes in the same space. If the black holes were not entangled we would not connect them by a Einsteint-Rosen bridge. But if they are somehow created at \(t = \text{with entangled state} \) the bridge between them represents the entanglement. See figure zob. Of course in this case the dynamical decoupling is not

Note: If you find two black holes in nature, produced by gravitational collapse, they will not be described by this geometry.
Not the typical science fiction wormhole

L

R

Non traversable

No signals

No causality violation

Fuller, Wheeler, Friedman, Schleich, Witt, Galloway, Wooglar

These are consistent with the laws of physics, as we know them!
In the exact theory, each black hole is described by a set of microstates from the outside.

Wormhole is an entangled state. Entanglement is a form of correlation in quantum mechanics.

Geometric connection from entanglement.
If a man does not keep pace with his companions, perhaps it is because he hears a different drummer

Si alguien no lleva el paso de sus compañeros, quizás sea porque está escuchando otro tamborista
A forbidden meeting

There are two asymptotic regions. The blue spatial slice contains the Einstein-Rosen bridge connecting the two regions, not in causal contact and information cannot be transmitted across the bridge. This can easily seen from the Penrose diagrams and is consistent with the fact that entanglement does not imply nontlocal signal propagation.

Figure z: Another representation of the blue spatial slice of figure y. It contains a neck connecting two asymptotically flat regions. Here we have two distant entangled black holes in the same space. The horizons are identified as indicated. This is not an exact solution of the equations but an approximate solution where we can ignore the small force between the black holes.

All of this is well known, but what may be less familiar is a third interpretation of the eternal Schwarzschild black hole. Instead of black holes on two disconnected sheets, we can consider two very distant black holes in the same space. If the black holes were not entangled, we would not connect them by an Einstein-Rosen bridge. But if they are somehow created at the same time, the Einstein-Rosen bridge represents the entanglement. See figure zobp. Of course, in this case, the dynamical decoupling is not exact.
Figure y: Maximally extended Schwarzschild spacetime. There are two asymptotic regions. The blue spatial slice contains the Einstein-Rosen bridge connecting the two regions, not in causal contact and information cannot be transmitted across the bridge. This can easily be seen from the Penrose diagrams and is consistent with the fact that entanglement does not imply nontlocal signal propagation.

Figure z: A different representation of the blue spatial slice of figure y. It contains a neck connecting two asymptotically flat regions. Here we have two distant entangled black holes in the same space. The horizons are identified as indicated. This is not an exact solution of the equations but an approximate solution where we can ignore the small force between the black holes.

All of this is well known, but what may be less familiar is a third interpretation of the eternal Schwarzschild black hole. Instead of black holes on two disconnected sheets, we can consider two very distant black holes in the same space. If the black holes were not entangled, we would not connect them by an Einstein-Rosen bridge. But if they are somehow created at \(t = 0 \) with entangled state, the bridge between them represents the entanglement. See figure z(b). Of course, in this case, the dynamical decoupling is not
Future

✓ Many remaining mysteries, including the meaning of the singularity…

✓ Lessons for cosmology?
Tensor networks
Artificial neural networks → deep learning
How do we see them?

- Watching matter fall in and heating up.

- Seeing the gravity waves produced by their collisions.
Trajectory of an observer

Light

Line of constant time

t=0

t=1
Light

Trajectory of Romeo

Trajectory of Juliet

Romeo’s lines of constant time

Light
Romeo's determines his lines of constant time.
Juliet determines her lines of constant time.

Romeo’s line of constant time

Juliet’s line of constant time

Light
The twin “paradox”
Romeo’s lines of constant time

Trajectory of Juliet

Trajectory of Romeo

Light

Romeo’s lines of constant time
Something interesting happens during the acceleration process.
Something interesting happens during the acceleration process.
Si alguien no lleva el paso de sus compañeros, quizás es porque está escuchando a otro tamborista.
Different quantum systems in detail, that give the same long long distance structure

Spacetime different near the boundary

Higher level “simplified” description
Local boundary quantum bits are highly interacting and very entangled.

$$S(R) = \frac{A_{\text{min}}}{4G_N}$$

Ryu, Takayanagi, Hubbeny, Rangamani
Entanglement and geometry

• The entanglement pattern present in the state of the boundary theory can translate into geometrical features of the interior.

• Spacetime is closely connected to the entanglement properties of the fundamental degrees of freedom.

• Slogan: Entanglement are the threads the weave the spacetime fabric…

• Spacetime is the hydrodynamics of entanglement.

Van Raamsdonk, Swingle
Emergent geometry

• View the boundary theory as the ultimate description.
• Then the bulk emerges in some approximation.
• Quantum mechanical entanglement plays an important role.
Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. Einstein, B. Podolsky and N. Rosen, Institute for Advanced Study, Princeton, New Jersey

The Particle Problem in the General Theory of Relativity

A. Einstein and N. Rosen, Institute for Advanced Study, Princeton
Black hole interior?

Equivalence principle

From outside: in-falling observer never crosses the horizon. It just gets hidden by the Hawking radiation.

Inside: No problem when crossing the horizon.

Same thought experiment that Einstein did!

Mystery: How do we describe it using the same variables that make unitarity manifest for the outside observer?
The next two lectures

• Wormholes and entanglement.
 – The problem with science fiction wormholes.
 – Traversable wormholes that could exist.
 – Their connection with entanglement.

• The entropy of Hawking radiation.
 – Hawking found that the entropy of Hawking radiation is larger than that of the matter that made the black hole.
 – We will compute it using a recently developed gravitational entropy formula and find a different answer which is consistent with quantum mechanics.