Probe of Band Structure Singularities with a Lattice-Trapped Quantum Gas

Charles D. Brown II

Department of Physics
University of California, Berkeley
Theory
Experiment
Shao-Wen Chang
Malte Schwarz
Tsz-Him Leung
Dan Stamper-Kurn

Physics Club
Yale University 10/18/2021

Alexander Avdoshkin
Vladyslav Kozii
Joel Moore

The National
Academies of
SCIENCES
ENGINEERING MEDICINE

Quantum Simulation

mimicking quantum systems for the purpose of understanding their states, phases, and dynamics

$$
\widehat{H}(\boldsymbol{r})=\sum_{i} \hat{T}\left(\boldsymbol{r}_{i}\right)+\sum_{i} \hat{V}\left(\boldsymbol{r}_{i}\right)+\sum_{i \neq j} \hat{I}\left(\boldsymbol{r}_{i}, \boldsymbol{r}_{j}\right)
$$

Digital Simulation
Requires quantum computer device

1. Initialize a state
2. Perform quantum algorithm (implement series of gates or transformations on qubits)
3. Perform measurement to get result

Analog Simulation

Cold atoms in lattices

Rydberg tweezers

Trapped Ion
Chains

Photonics

Problem-types that quantum simulators have addressed

time-dependent

ground states
quantum magnetism

quantum spin liquid

superconductivity

$\frac{\text { Groups }}{\text { Bloch }}$
Bakr

Browaeys

Schauss
:
Groups
Lukin
Vuletic
Greiner
Stamper-Kurn
!
Groups
Hulet
:

Quantum simulation is not just for condensed matter

Quantum simulation experiments may provide insight on problems in particle physics

Monika Aidelsburger Thesis 2015

HEP tells us that gauge fields are ubiquitous in nature

- Photons: electromagnetism
- Gluons: strong force
- W and Z particles: weak force

How to achieve artificial gauge fields in a lattice

- Lattice shaking
- Laser-assisted tunneling (Spielman Group)

Time-dependent artificial gauge fields \rightarrow dynamical

Why do we want to simulate solid-state systems?

Many exciting questions on exotic superconductivity and magnetism, quantum Hall effects, topological matter...

An ultracold quantum simulator offers several advantages

- Controllable defects
- Long-lived quantum coherence
- The ability to prepare many identical copies
- The ability to study out-of-equilibrium physics

We can provide great insight into the behavior of solid materials with crystalline lattice structure

Crystalline Lattice

A periodic set of points that has some set of symmetries

Energy Bands of Particles in a Lattice

A solid's band structure describes the allowable energy levels for electrons in a crystal lattice

Band structure explains material properties
Electrical Resistivity Optical Absorption

Bloch wavefunctions

$$
\begin{gathered}
\psi_{n}(q)=u_{n}(\vec{r}) e^{i \vec{q} \cdot \vec{r}} \\
u_{n}(\vec{r})=u_{n}(\vec{r}+\vec{R})
\end{gathered}
$$

Energy Bands of Particles in a Lattice

A solid's band structure describes the allowable energy levels for electrons in a crystal lattice

Band structure explains material properties

Electrical Resistivity
Optical Absorption
> $+$
> Quantum Hall Effects
> Orbital Magnetism
> Topological Insulators

Bloch wavefunctions: $\psi_{n}(q)=u_{n}(\vec{r}) e^{i \vec{q} \cdot \vec{r}}$
Berry Connection: $A_{m n}(q)=\left\langle\psi_{m}(q)\right| \nabla_{q}\left|\psi_{n}(q)\right\rangle$

Bosons VS. Fermions

We use the bosonic isotope ${ }^{87} \mathrm{Rb}$ to make a Bose-Einstein Condensate

An exotic state of matter: Bose-Einstein condensate

The de Broglie wavelength describes the wavelike behavior of matter:

$$
\lambda_{\mathrm{dB}}=\left(\frac{2 \pi \hbar^{2}}{m k_{\mathrm{B}} T}\right)^{1 / 2}
$$

When temperature is low enough: $\lambda_{\mathrm{dB}}^{3}>\frac{V}{N}$

GrosseRifadergkeii Equation

From our lab

Optical Lattice Potential - "Optical Lattice"

We use multiple pairs of intersecting beams to make 2D or 3D lattices

An Optical Honeycomb Lattice

This allows us to create an ultracold atom analog of graphene

Solid-State Graphene

A crystal's band structure and the geometry/topology of state space determines its properties

Graphene

- Andrew Geim, Konstantin Novoselov - 2010 Nobel prize
- Dirac singular points with Berry (geometric) phase
- Klein tunneling
- Half-integer quantum Hall effect
- Twisted bi-layer graphene and Moire patterns
M. Katsnelsen, The Physics of Graphene

My artificial graphene also has Dirac points with interesting topological properties

Experimental Setup

"light preparation" table

Ultracold Atom Analog of Graphene

Tight-binding band structure

Duca et al (Schneider, Bloch), Science 2015

Tarruell et al (Esslinger), Nature 2012 Jotzu et al (Esslinger), Nature 2014

Flaschner et al (Sengstock), Science 2016

Li et al (Bloch, Schneider), Science 2016

Direct Probe of Dirac Singularity

Direct Probe of Dirac Singularity

- Two band model
- population dynamics driven by:

$$
A_{m n}(\boldsymbol{q})=\left\langle\psi_{m}(\boldsymbol{q})\right| \nabla_{\boldsymbol{q}}\left|\psi_{n}(\boldsymbol{q})\right\rangle
$$

- Measure of quantum distance:

$$
\mathrm{d}^{2}=1-\left|\left\langle u_{2}\left(\boldsymbol{q}^{\prime}\right) \mid u_{1}(\boldsymbol{q})\right\rangle\right|^{2}
$$

- Reveals the quantum metric tensor g

$$
\mathrm{d}^{2}(\mathbf{q}, \mathbf{q}+\mathrm{d} \mathbf{q})=g_{\mathrm{ij}}(\mathbf{q}) \mathrm{d} \mathbf{q}_{\mathrm{i}} \mathrm{~d} \mathbf{q}_{j}
$$

CDB

Effective Size of Dirac Singularity

- Band population transfer is only geometrydependent for evolution through Dirac points
- Time-dependence returns for trajectories away from the Dirac points
- Landau-Zener physics
- Singularity size grows with shorter acceleration times
- Effectively increased band degeneracy

Direct Probe of QBTP

- QBTP at Γ
- Load a running lattice, then evolve to Γ
- Interferometric measurements can't detect non-trivial topology of QBTP by encircling it
- Quantum distance measurement is better for observing non-trivial topology of this singularity
- 2 windings around the QBTP instead of 1 around the Dirac point

CDB, ..., Joel Moore, Dan Stamper-Kurn arXiv:2109.03354

Conclusion and Future Work

Conclusion

- An ultracold atom quantum simulator is a powerful tool that allows for simulation of real materials or toy Hamiltonians
- Measurements of quantum distance allow the non-trivial topology of Dirac points and QBTPs to be directly revealed
- We observe quantized winding numbers
- 1 winding around the Dirac point
- 2 windings around the QBTP

Future Work

- Flat p-band in the honeycomb lattice
- Where do bosons condense?
- What happens if atoms are held at singularity for various times?

QBTP

Quantum Simulation of Quasicrystals

2X Nobel laureate Linus Pauling once said, "There is no such thing as quasicrsytals, only quasi-scientists."

Al-Mn alloy
Shechtman et al, PRL 1984

- Dan Shechtman - 2011 Nobel prize in Chemistry for discovery
- Quasicrsytals are aperiodic but ordered, with no translation symmetry
- Superconductivity discovered in a 5-fold quasicrystal in 2018
- Unusual superconductivity?
- What sorts of other interesting and unusual states of matter might be realizable in a quasicrystal?
- No translation symmetry means no well defined quasimomentum or Fermi surface
- A 5-fold rotation-symmetric ultracold atom quasicrystal would be very interesting
- Quantum physics of quasicrystals
- Wave packet diffusion
- Phason excitations
- Topology in quasicrystals

EXTRA
 SLIDES

