
QUALIFYING EXAMINATION, Part 1

9:00 – 11:30 am, Thursday September 2, 2021

Attempt all parts of both problems.

Please begin your answer to each problem on a separate sheet, write your 3 digit code
and the problem number on each sheet, and then number and staple together the sheets
for each problem. Each problem is worth 100 points; partial credit will be given.

Calculators and cell phones may NOT be used.
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Problem 1: Classical Mechanics I

Consider a uniform disk of of mass M and radius a rolling without sliding down an
incline plane (see figure). x is the distance traveled by the disk along the incline, θ is the
rotation angle of the disk, and α is the tilt angle of the incline.

(a) (20 points) Write the Lagrangian for the disk using x as the independent coordinate.
Find the equation of motion and solve for the acceleration ẍ.

In the following, do not eliminate the constraint of rolling without sliding and use the
method of Lagrange multipliers to solve the problem.

(b) (30 points) Write the Lagrangian in terms of x and θ when considered as two inde-
pendent coordinates and write the two equations of motion in the presence of the rolling
without sliding constraint.

(c) (20 points) Solve the two equations in part (b) together with the constraint equation
to find ẍ.

(d) (30 points) Find the static friction force between the disk and the incline plane using
the method of Lagrange multipliers.
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Problem 2: Classical Mechanics II

In reference frame S, a relativistic particle of rest mass m travels with velocity ~v1 = 3
5
cx̂

in the positive x direction, where c is the speed of light, and hits a stationary particle of
identical mass m sitting at the origin, ~v2 = 0. The two particles annihilate and produce
a single particle of rest mass Mf that travels with velocity Vf x̂.

Express all answers below in terms of m and c.

(a) (20 points) What are the momentum 4-vectors of the two particles of mass m before
the collision?

(b) (30 points) Assuming that the annihilation process conserves 4-momentum, what are
Mf and Vf?

Now consider the reference frame S ′ which is moving with relative velocity Vf in the
positive x-direction, corresponding to the frame in which the particle of mass Mf sits at
rest at the origin.

(c) (25 points) What are the velocities ~v′1 and ~v′2 of the two initial particles in the frame
S ′? (Hint: Use 4-momentum conservation in the frame S ′.)

(d) (25 points) Some time after the collision the particle of mass Mf subsequently decays
to two photons γ± which travel back-to-back in the ±x̂ directions. What is the ratio of
their energies E

′
γ+
/E

′
γ− in the S ′ frame? What is the ratio of their energies Eγ+/Eγ− in

the S frame?
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QUALIFYING EXAMINATION, Part 2

2:30 – 5:00 pm, Thursday September 2, 2021

Attempt all parts of both problems.

Please begin your answer to each problem on a separate sheet, write your 3 digit code
and the problem number on each sheet, and then number and staple together the sheets
for each problem. Each problem is worth 100 points; partial credit will be given.

Calculators and cell phones may NOT be used.

1



Problem 1: Electromagnetism I

A spherical bubble of radius a and conductivity σ1 is embedded inside an infinite con-
ducting medium with conductivity σ2. A uniform steady current density J0 = J0ẑ flows
in from infinity. The goal of this problem is to find the distribution of currents everywhere
in space given that J(|x| → ∞) = J0. The relevant equations are the conservation of
current ∇ · J = 0, Ohm’s law J = σE, and ∇× E = 0.

(a) (15 points) Write down the boundary conditions on the current at the interface be-
tween the bubble of conductivity σ1 and the medium of conductivity σ2.

(b) (15 points) Introduce an electrostatic potential, E = −∇Φ and use the result of part
(a) to write boundary conditions for Φ at the interface.

(c) (35 points) Use the boundary conditions of part (b) and the condition J(|x| → ∞) = J0

to solve for the potential Φ inside and outside the sphere. One possible approach is to use
separation of variables in spherical coordinates (r, θ, φ) (with r = 0 at the center of the
sphere). Recall that in spherical coordinates, the general solution of Laplace’s equation
takes the form

Φ(x) =
∞∑
`=0

(
A`r

` +B`r
−`−1)P`(cos θ),

for systems with azimuthal symmetry.

(d) (20 points) Without doing an explicit calculation, explain how would you use your
results in (c) to find the surface charge density that develops at the interface between the
two conductors.

(e) (15 points) How would you calculate the Ohmic heat produced by the current flow
inside the sphere? Do not carry out an explicit calculation.
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Problem 2: Electromagnetism II

A coaxial cable consists of two concentric hollow cylindrical shells separated by vac-
uum, with radius a for the inner conductor and radius b for the outer conductor (both
cylinders have negligible thickness). The length of the conductors, l, is much larger than
their radial dimensions (i.e., l� a, b) such that they can be treated as essentially infinite
in extent.

b

a

l

𝑅!
𝑉 = 𝑉!cos(𝜔𝑡)

𝑉 = 0 z

A time varying voltage V (t) = V0 cos(ωt) is applied at one end of the cable to the
center conductor (at z = 0) while the outer shield is grounded. A resistive termination
with total resistance R0 is connected at the other end (at z = l). Both the voltage source
and termination resistor can be assumed to be cylindrically symmetric. Also assume the
cylinders can be treated as perfect conductors with negligible resistivity.

For this problem you can work in the “quasistatic limit,” i.e., retardation effects can
be neglected.

(a) (15 points) Write down a condition on the angular frequency, ω, in terms of l and
fundamental constants that should be satisfied to ensure that the quasistatic limit applies.

(b) (30 points) Find the magnetic field everywhere, including terms up to first order in ω
(higher order terms in ω can be neglected).

(c) (30 points) Find the electric field everywhere, including terms up to first order in ω
(higher order terms in ω can be neglected).

(d) (25 points) Calculate the energy flux through a cross-section of the cable that is per-
pendicular to the axis of the cylinder at some position z along its length. Use this to
determine the power (energy per unit time) delivered to the resistive termination, R0.

The following expression for the Poynting vector (in SI units) may be useful:

S =
1

µ0

(E×B)
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QUALIFYING EXAMINATION, Part 3

8:30 am – 11:00 pm, Friday September 3, 2021

Attempt all parts of both problems.

Please begin your answer to each problem on a separate sheet, write your 3 digit code
and the problem number on each sheet, and then number and staple together the sheets
for each problem. Each problem is worth 100 points; partial credit will be given.

Calculators and cell phones may NOT be used.

1



Problem 1: Statistical Mechanics I

Certain proteins can sense temperature with surprisingly high sensitivity. While the
molecular mechanisms are not well understood, here we will examine a candidate mech-
anism for a ‘molecular thermometer’ that reads out temperature by unfolding near a
temperature Tu. In this problem we will treat unfolding as the readout of the thermome-
ter. (In cells, unfolding would trigger the opening of an ion channel, allowing current to
cross the membrane.)

Imagine a polymer, made of N monomers, which can be either ‘folded’ or ‘unfolded’.
In the ‘folded’ state, every monomer’s orientation is fixed, and the system has a total
energy Ef = −Nε where ε is an energy per monomer associated with folding. In this
state, we will assume that the polymer has no configurational entropy. In the ‘unfolded’
states, each monomer can point in any of 6 directions (choosing an arbitrary direction on
a cubic lattice in this model), and we will assume that it has energy Eu = 0.

(a) (20 points) What is the configurational entropy of the unfolded state? You do not
need to worry about the chain avoiding itself, and do not subtract the folded state from
your count.

(b) (20 points) What is the partition function for a single polymer at temperature T ,
assuming the protein can explore both the folded and unfolded states? Note that in this
model the entire polymer must be either folded or unfolded – individual monomers cannot
independently unbind.

(c) (10 points) At what temperatures T0.5 and T0.1 are the polymer folded 50% of the time
and 10% of the time, respectively?

(d) (10 points) How does N influence the location of the unfolding transition and its
sharpness? You can use your result from (c) but also give a qualitative explanation.

(e) (20 points) Denoting the probability of being unfolded by Pu, find an expression for
the relative sensitivity g = T ∂Pu

∂T
of this thermometer in terms of T,N and ε. What is g

at the temperature T0.5 where 50% of the molecules are unfolded?

(f) (20 points) The most sensitive single molecule thermal sensors in biology can be
activated (assume from 10% to 90% unfolded in this model) by about a 3 K change at
temperatures near 300 K. If the mechanism through which this is achieved is indeed by
unfolding the same molecule, about how long do you expect the polymer to be?
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Problem 2: Statistical Mechanics II

In this problem, we will study the Joule-Thomson (JT) effect in ideal classical and quan-
tum gases. The JT (also known as throttling) effect is the temperature change of a gas
or liquid as its pressure changes when it is forced through a valve or porous plug while
not allowing heat to be exchanged with the environment. The JT is a process in which
the enthalpy remains constant.

Consider a gas of indistinguishable monoatomic bosons of mass m confined to a 3D
cubic box of volume V . Please look first at the formulas in the next page.

(a) (15 points) Consider first the classical (high-temperature) limit. Recall the equations
of state P (T, V,N) and E(T, V,N) of a classical monoatomic ideal gas, and calculate the
enthalpy H(T, V,N) of the gas. Find the JT coefficient defined by µJT =

(
∂T
∂P

)
H

for the
classical ideal gas.

(b) (15 points) Show that the chemical potential µ must satisfy µ ≤ 0 in the limit of an
infinitely large box. Show that, at a fixed temperature T , the density of particles in the ex-
cited single-particle states is maximal when µ = 0 and is given by ρc = Nc/V = ζ(3

2
)/λ3T .

Note that the number of particles in the excited single-particle states (i.e., not in the
single-particle ground state) is given by Nex =

∫∞
0

dε D(ε)n(ε).

(c) (15 points) What occurs if the density of the gas is further increased above ρc at that
fixed temperature T? Which energy level(s) do the additional atoms occupy?

(d) (15 points) Express the internal energy of the gas E(µ, T ) in the Bose-condensed phase
(for which µ = 0) in term of an integral (do not attempt to calculate it). Explain that in
the limit of a large box, only the atoms in the excited single-particle states contribute to
the energy, i.e., E ∝ NexkBT = NckBT . Do not attempt to calculate the pre-factor.

(e) (20 points) Instead of the conventional JT process, consider a process by which atoms
are removed indiscriminately from the box, i.e., in such a way that the energy per par-
ticle E/N remains constant. Show that for the classical ideal gas, this process is also a
JT process (known as a JT rarefaction), i.e., that the enthalpy per particle h = H/N is
constant. (We note that this result also holds for the ideal Bose gas.)

(f) (20 points) Consider an ideal Bose gas. Using the condition that E/N is constant
through the JT rarefaction, show that in the Bose-condensed phase NT γ is constant
through the JT process, and determine the value of γ. Is the JT rarefaction a cooling or
heating process? Does the phase-space density ρλ3T increase or decrease? (ρ = N/V is
the total density).
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Useful formulas:

The Bose-Einstein occupation n(ε) of the energy level ε is

n(ε) =
1

eβ(ε−µ) − 1
,

where β = 1/kBT and µ is the chemical potential.

∫ ∞
0

x1/2

ex − 1
=

√
π

2
ζ

(
3

2

)
,

where ζ is Riemann’s zeta function.

The single-particle density of states in a 3D box is D(ε) = V
4π2

(
2m
~2
)3/2√

ε.

The enthalpy is H = E + PV .

The de Broglie thermal wavelength is λT =
√

2π~2
mkBT

.
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QUALIFYING EXAMINATION, Part 4

2:30 – 5:00 pm , Friday September 3, 2021

Attempt all parts of both problems.

Please begin your answer to each problem on a separate sheet, write your 3 digit code
and the problem number on each sheet, and then number and staple together the sheets
for each problem. Each problem is worth 100 points; partial credit will be given.

Calculators and cell phones may NOT be used.
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Problem 1: Quantum Mechanics I

Two non-interacting particles are in a 1D box of size L symmetric about x = 0:

Vbox(x) =

{
0 |x| < L

2

∞ otherwise

The two lowest energy (normalized) single-particle eigenstates are

φ1(x) =

√
2

L
cos

πx

L
φ2(x) =

√
2

L
sin

2πx

L
.

(a) (10 points) Sketch these eigenfunctions and comment on their parity.

(b) (15 points) Write down the normalized two-particle wavefunction ψ(x1, x2) of appro-
priate symmetry when there is an identical boson in each of these states.

(c) (15 points) Same as (b) but when there is an identical fermion in each of these states.

(d) (20 points) What is PLL, the probability of finding both particles in the left half of
the box, for the bosonic case?

(e) (20 points) Same as (d) but for the fermionic case.

For parts (d) and (e) do not write down explicit forms of the wave functions, just write
them in terms of φ1(x1) etc. and remember their symmetries.

(f) (20 points) What is PLR + PRL, the probability of finding the particles in opposite
halves of the box (for both the bosonic and fermionic cases)?

Use symmetries to evaluate all of the integrals except
∫ L

2

0
φ1(x)φ2(x)dx = 4

3π
. Write

your final answers for PLL amd PLR + PRL in terms of 4
3π

. There is no need to calculate
numerical values.
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Problem 2: Quantum Mechanics II

We set ~ = 1 throughout this problem.

In two-dimensional quantum materials there exist emergent particles which are neither
bosons or fermions. In this problem we study quantum mechanics of two identical particles
with “semionic” statistics: when they are exchanged, there is a factor of ±i instead of ±1
for bosons/fermions. The Hamiltonian operator of the two particles takes the following
form:

Ĥ =
p̂2
1

2m
+

p̂2
2

2m
+ V (r̂1 − r̂2).

Here r̂1 and r̂2 are the coordinates of the two particles in the two-dimensional plane and
p̂1, p̂2 are the conjugate momenta. We assume that they have the same mass. It is most
convenient to work with center of mass coordinate R̂ = r̂1+r̂2

2
and relative coordinate

r̂ = r̂1 − r̂2. The corresponding momenta are P̂ = p̂1 + p̂2, p̂ = p̂1−p̂2

2
. We denote the

two-particle wavefunction by ψ(R, r). The semionic statistics is taken care of by imposing
the following boundary condition of the two-particle wavefunction:

ψ(R, r, φ+ 2π) = −ψ(R, r, φ) , (1)

where r, φ are the polar coordinates for the relative position r.

(a) (20 points) Rewrite Ĥ in terms of R̂, P̂, r̂, p̂. Show that the center of mass degree of
freedom decouples from the relative one.

In the following we set P = 0 throughout.

(b) (20 points) Suppose that V (r1− r2) = V0(r) is a function of r = |r1− r2| only. In this
case the Hamiltonian is rotationally invariant, so that the angular momentum l̂ = −i ∂

∂φ
is

a good quantum number. What are the eigenvalues of l̂ given the boundary condition (1)?

(c) (10 points) Since l̂ and Ĥ can be diagonalized simutaneously, we can fix l (to be one
of the eigenvalues you find in part (b)) and the Hamiltonian in polar coordinates takes
the following form:

Ĥl =
1

m

(
−1

r

∂

∂r
r
∂

∂r
+
l2

r2

)
+ V0(r).

We assume that for each l, Ĥl yields a non-degenerate spectrum Eln (n = 0, 1, 2, . . . ) of
bound states. The radial eigenfunction of Ĥl for the n-th bound state will be denoted
by fln(r), so Ĥlfln(r) = Elnfln(r). You may assume that fln(r) are real and properly
normalized.

Show that the spectrum of Ĥ (with P = 0) is two-fold degenerate.
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(d) (10 points) Besides rotational symmetry, the Hamiltonian is invariant under the time-
reversal transformation Θ̂, which is just complex conjugation of the wavefunction in co-
ordinate space. How do the eigenstates transform under Θ̂? Your result should satisfy
Θ̂2 = 1.

(e) (10 points) The Hamiltonian is also invariant under the rotation φ → φ + π (which
amounts to an exchange of the two particles r1 ↔ r2). We will call this operation Ĉ.
Define Θ̂′ = Θ̂Ĉ, which is another anti-unitary symmetry transformation. Determine
how the eigenstates transform under Θ̂′.

(f) (10 points) Show that Θ̂′2 = −1, so the degenerate eigenstates in fact form Kramers’
doublets under the modified time-reversal symmetry Θ̂′.

(g) (20 points) Now suppose that the two-particle interaction has a small anisotropic
component, so V (r) = V0(r)(1 + ε cos2 φ) with ε � 1. Use perturbtion theory to find
the first-order corrections (i.e., proportional to ε) to energy eigenvalues. Your result may
contain an integral involving fln and V0. Does the degeneracy of the spectrum persist
once the perturbation is turned on? Explain why.
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