

Precision

Electroweak Experiments at GeV Energies

Parity Violating Electron Scattering at Jefferson Lab

Jim Napolitano Temple University Yale Physics Club 1 Nov 2021

Today's Physics Topics (1) Neutron Stars (2) Beyond the

Science 304(2004)536

Yale Physics Club

Standard Model

PDG 2020

1 Nov 2021

Parity Violating Electron Scattering

The mirror reverses the direction of the electron spin!

е

Nature says that the two mirror images are not equivalent ...

... and the details are specified completely by the Standard Model

р

 Z_0

... where details depend on the interaction with the target!

Axial Vector Couplings of Z⁰ Getting at the "Physics" Axial Vector/Vector Interference is the key! \blacktriangleright What are the different Z⁰ axial couplings? Electron $+1-4 \sin^2\theta_W$ Up quark (u) $-1+(8/3) \sin^2\theta_W$ $+1-(4/3) \sin^2\theta_W$ Down quark (d) Proton = 2u+d $-1+4 \sin^2\theta_W$ Neutron = u+2d+1 Note: $\sin^2\theta_W$ is close to 1/4 Electron and proton couplings are small !

Some Previous ePV Experiments

All asymmetries given in parts per billion (ppb)

Year	Lab	Target	A _{PV}	δΑρν	Comments	
1978	SLAC	H ₂ (DIS)	49,000	8000	Confirmation of the Standard Model	
1990	Bates	¹² C (Elastic)	600	140	Isolation of one term in the current	5
1997	Bates	p (Elastic)	6340	160	SAMPLE: Strangeness in the nucleon	
2005	SLAC	e⁻ (Møller)	117	16	E158: Test of running value of $sin^2\theta_W$	
2006	JLab	⁴ He (Elastic)	5981	810	HAPPEX-4He: Strange nucleon form factor	
2007	JLab	p (Elastic)	1500	110	HAPPEX-II: Strange form factor of proton	
2012	JLab	²⁰⁸ Pb (Elastic)	584	53	PREX-I: Neutron skin thickness	
2014	JLab	H ₂ (DIS)	80,000	3000	PVDIS: Precision & wide kinematic range	
2018	JLab	p (Elastic)	227	9	QWeak: Precision at very low q ²	

Example: SLAC (1978)

C. Prescott, et al, Phys. Lett. 77B (1978) 347

Yale Physics Club

1 Nov 2021

(1) Neutron Stars

Using neutron-rich nuclei to learn about neutron matter.

Can this help us to understand some of the mysteries about neutron stars?

Neutron Stars in the News

Neutron Star Binary Mergers in the Multi-Messenger Age

<u>GW170817</u>: PRX 9 (2019)011001 ApJ 848 2017 L12

Discovery of Neutron Stars with Mass >2 Solar Masses

PSR J1614-2230: Nature 467(2010)1081

Also <u>PSR J0348+0432</u>: Science 340(2013)448

► It is imperative to learn about neutron matter

Neutron Stars & Neutron Skins

See Reed, et al, Phys.Rev.Lett 126(2021)172503

Elastic Scattering Form Factors

Scattering amplitude is proportional to $F(q) = \int \rho(r)e^{i\mathbf{q}\cdot\mathbf{r}} dV$ $= 1 - \frac{q^2}{6} \int r^2 \rho(r) dV + \cdots$ $= 1 + \frac{q^2}{6} \langle r^2 \rangle + \cdots \text{Note!}$

The mean square radius $\langle r^2 \rangle$ gives the "radius" of the distribution $\rho(r)$.

Measuring the Neutron Skin

Recall:	<u>Photon</u>	<u>Z</u> 0
Proton	1	Small
Neutron	≈0	1

$$A_{\rm PV} = \frac{d\sigma(\Rightarrow) - d\sigma(\Leftarrow)}{d\sigma(\Rightarrow) + d\sigma(\Leftarrow)}$$

$$= \frac{G_F q^2 F_Z(q)}{4\pi\alpha} \frac{F_{\gamma}(q)}{F_{\gamma}(q)}$$

Parity Violating elastic scattering directly measures the neutron skin...

$$= \frac{G_F q^2}{4\pi\alpha} \left\{ 1 - \frac{q^2}{6} \left[\langle r_n^2 \rangle - \langle r_p^2 \rangle \right] + \cdots \right\}$$

... but this term is small.

PREX and CREX

Energy	208Ph 1.0 GeV 48Ca	$2.2 \mathrm{GeV}$
Angle	5 degrees	4 degrees
A_{PV}	$0.6 \mathrm{ppm}$	$2 \mathrm{ppm}$
1 st Ex. State	$2.60 \mathrm{MeV}$	$3.84 \mathrm{MeV}$
beam current	$70 \ \mu A$	$150~\mu\mathrm{A}$
rate	$1~\mathrm{GHz}$	$100 \mathrm{MHz}$
run time	$35 \mathrm{~days}$	$45 \mathrm{~days}$
A_{PV} precision	9% (PREX-I) <mark>3% (PREX-II)</mark>	2.4%
Error in R_N	0.06 fm (PREX-II)	$0.02~\mathrm{fm}$

²⁰⁸Pb: Large nucleus \Rightarrow nuclear matter ⁴⁸Ca: Microscopic calculation tractable

Hall A at Jefferson Lab

Put in Numbers for ²⁰⁸Pb

Precision is the key!

$$A_{\rm PV} = \frac{G_F q^2}{4\pi\alpha} \left\{ 1 - \frac{q^2}{6} \left[\langle r_n^2 \rangle - \langle r_p^2 \rangle \right] + \cdots \right\}$$
$$\langle r_n^2 \rangle - \langle r_p^2 \rangle = \left(\langle r_n^2 \rangle^{1/2} + \langle r_p^2 \rangle^{1/2} \right) \left(\langle r_n^2 \rangle^{1/2} - \langle r_p^2 \rangle^{1/2} \right)$$
$$\approx 2R_{\rm Pb} \qquad \Delta_{\rm Skin}$$

 q^2 0.076 GeV^2 R_{Pb} 6 fm Δ_{Skin} $\sim 0.2 \text{ fm}$ $q^2 \left[\langle r_n^2 \rangle - \langle r_p^2 \rangle \right] / 6$ 0.076 δA_{PV} 3% $\delta \Delta_{\text{Skin}}$ 0.07 fm

If we can measure the (small!) parity violating asymmetry itself to about 3%, then we should be able to determine the skin thickness with an uncertainty near 0.07 fm.

The PREX Result

Adhikari, et al, Phys.Rev.Lett 126(2021)172502

3×106 1/30 sec @ 240 Hz

PREX Media Attention

Physics Today 74(2021)12 & K Scholberg https://physics.aps.org/articles/v14/58

SEARCH & DISCOVERY Lead-208 nuclei have thick skins

Nuclear matter calculations generally predicted a smaller value for the "pressure" *L*.

CREX Just Released

Points are a collection of Relativistic and Non-Relativistic DFT calculations Compare to predictions of microscopic calculations? eg G. Hagen et al, Nature Physics 12 (2016) 186

First need to sort out some issues, including a strong "weak spin orbit" effect that mainly effects ⁴⁸Ca eg Horowitz and Piekarewicz, Phys Rev C86(2012)045503

Electron Beam Polarization

High Precision Necessary

Two Approaches: Møller and Compton $P_e = 87.09 \pm 0.44\%$

(2) Beyond the Standard Model

Standard Model gives the weak neutral couplings to high precision.

But is there a hint of "new physics" in the LEP1/SLC discrepancy?

Want to look for new bosons at high masses!

"High Energy Physics" at Low Energies

-XSHO(t

10

15

5

Yale Physics Club

1 Nov 2021

20

MOLLER @ JLab Measurement Of Lepton-Lepton Elastic Reaction Parity Violation in Electron-Electron Elastic Scattering -p' D $e_{e}^{-}e_{e}^{-}$ $\hat{e_e}$ p'_1 p_2' e e p_2 p_2' p_2 v_{e} W٤ Look for deviations from the calculated result! Asymmetry is 33 ppb. Precision goal is 2.4% (0.7 ppb)

Sensitivity to New Physics

Standard Model → New Physics Added

 $\left[\frac{g_{AV}^{eq}}{2v^2} + \frac{4\pi}{(\Lambda^{eq}_{AV})^2}\right] \bar{e}\gamma^{\mu}\gamma^5 e\bar{q}\gamma_{\mu}q$ A New Scale!

Depending on the new couplings, the MOLLER result will test for Higgs-like particles with mass up to ≈10 TeV (roughly 100×Higgs)

Experin

Detector Arrangement

Quartz Cherenkov detectors to gather light from scattered electrons.

PMT signals are integrated for each polarization state.

Some Parameters

Beam E	11 GeV	Liquid Hydrogen Target
Møller E'	1.7 - 8.5 GeV	motor
θсм	46° - 127°	
θ_{Lab}	0.23° - 1.1°	heat exchanger
$\langle \mathbf{Q}^2 \rangle$	0.0058 GeV ²	
Current	70 µA	
Møller rate	123 GHz	beam
Flip rate	1920 Hz	← 125 cm →

Deposited power = 4kW

Uncertainty Budget

Challenging Experiment!

But the scientific case is solid, CD1 is granted, R&D to finalize design is underway, and we are on a path for installation some time in 2025.

Error Source	Fractional Error (%)
Statistical	2.1
Absolute value of Q^2	0.5
beam (second order)	0.4
beam polarization	0.4
$e + p(+\gamma) \to e + X(+\gamma)$	0.4
beam (position, angle, energy)	0.4
beam (intensity)	0.3
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.3
$\gamma^{(*)} + p \to \pi + X$	0.3
Transverse polarization	0.2
neutrals (soft photons, neutrons)	0.1
Total systematic	1.1

Beam	Assumed	Accuracy of	Required 1 kHz	Required cumulative	Systematic
Property	Sensitivity	Correction	random fluctuations	helicity-correlation	contribution
Intensity	1 ppb / ppb	~1%	< 1000 ppm	< 10 ppb	$\sim 0.1 \; { m ppb}$
Energy	-1.4 ppb / ppb	$\sim \! 10\%$	$< 286 \mathrm{~ppm}$	< 0.7 ppb	$\sim 0.05~{ m ppb}$
Position	0.85 ppb / nm	$\sim \! 10\%$	$< 47 \ \mu { m m}$	< 1.2 nm	$\sim 0.05~{ m ppb}$
Angle	8.5 ppb / nrad	$\sim \! 10\%$	$< 4.7 \ \mu rad$	< 0.12 nrad	$\sim 0.05~{ m ppb}$

Yale Physics Club

1 Nov 2021

Comparison with Other Results

1 Nov 2021

Conclusions

Parity Violating electron scattering with GeV beams is a useful tool for studying nature.

We now have new information that will help us understand the structure of neutron stars!

Next: MOLLER will search for New Physics at multi-TeV energies through Precision ePV.

Thank You!