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Biology is the ultimate example of emergence

.
-

McGuffee SR, Elcock AH (2010) Berg lab




Biology is the ultimate example of emergence

McGuffee SR, Elcock AH (2010)



Questions for Physics of Living Systems:

* How does comprehensible function emerge
from many noisy molecular machines?

*What are the functions of Living Systems and
what constraints limit them?

* How do living systems gather and process
information distributed among many noisy
components?



Tools for Physics of Living Systems:

e Statistical Physics, phase transitions, soft-
matter / materials science

* Non-equilibrium thermodynamics
*Information theory

* Control theory, optimization, reverse
engineering



In this talk

* Overview of recent directions in my group

* Main: extreme thermal sensitivity in the pit
organ

* Physiology/ecology of pit organ, neurons, TRP
family ion channels

* Frame sensing problem pit organ must solve

* Proposed mechanism — dynamical bifurcation in
electrical activity

* Further Directions / Conclusions
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Emergent simplicity in complex models

10.0
equally equal unbiased @ .
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predictions: volumes: measure: @ o M-7.5
O c
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BBM, Chachra, Transtrum, Sethna. Parameter Space Compression
Underlies Emergent Theories and Predictive Models. Science (2013)

Mattingly, Transtrum, Abbott and BBM, Maximizing the information

learned from finite data selects a simple model. PNAS, 2018
Abbott, BBM, A scaling law from discrete to continuous solutions of

channel capacity problems in the low-noise limit, ) Stat Phys 2019

Michael Abbott Henry Mattingly



Energetic bounds

Moving a thermodynamic system
requires sub-extensive energy

o
S>2L(Xi, Af) 4 L7(Xi, As)

A+

,-'I‘R _ =2
wTR = 22 g
— wNC —won _AF

SR Wtotal — WTR + WNC \X
- o S 0 080808 . n-ln1n-|| ' s 6 58000 n s s 0 e

Bryant and BBM, Energy Dissipation Bounds for Autonomous
thermodynamic Cycles. PNAS, 2020

Sam Bryant

Time asymmetric data implies
entropy production

. [dw d‘q
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Seara, BBM, Murrell Energy Dissipation Irriversibility in
Dynamical Phases and Trtansitions. Nat Comm, 2020



Energetic costs of sending information

Optimal Transmission Strategy

[y
o
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noisy - @ (c)
channel - %
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B  Electrical
B 2D Diffusion
102 B 3D Diffusion
Acoustic

Transmission frequency f (Hz)

10° 102 10*
Distance 7 (um)

Sam Bryant



E. coli Chemotaxis is information limited

Ax(s) Performance < f(Information rate)
g(S
R <1
Ar S 0.12¢

~—

Dr Vo § 0.1} /
4

a ‘5 0.08 > =
_ O ?;)0.06- /_/“—_’, G
'Té' 0.04 /J‘I"/
2 0.02] 47
2 S
0 0.01 0.02 0.03 0.04

Information rate I (bits/s)

H. Mattingly, K. Kamino, BBM, T. Emonet. E. Coli Chemotaxis is
Information limited. Nat Phys. (2021)

Keita
Kamino

Henry Mattingly
Thierry Emonet



Membrane criticality

* Vesicles isolated from cells are complex 2D liquids Plasma membranes

* Tuned near to an Ising critical point :,“ 0 .
— [ /A
* What does this critical point mean for function? %
* How are these critical points tuned? g
GEJ Boiling/water
|_
©
)
O
)
©
)
Y, |

0
magnetization, m



Membrane criticality sensitively modulates
orotein |

nteractions

in(de)creases target activity

Taylor Schaffner
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Tri-critical points in asymmetric membranes

Anjiabei Wang
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Prewetting proteins to critical membranes

Tethers,p

Phase transition of the
Presynaptic terminal PSD-95/SynGAP complex

Dendritic spine

Zeng et al, Cell 2016

Mason Rouches, Sarah L. Veatch, BBM. Surface Densities are
Mason Rouches pre-wetting to a nearly critical membrane, PNAS. 2021



Pit organs are infrared imagers

* Pit Vipers have pit organs.

* Pits are thermal imaging
organs

For hunting small mammals
pit opening a pinhole camera

Heat absorbed on thin
membrane

~10k myelinated nerve fibers
with 10um sensory endings

low resolution thermal image

Goris, Journal of Herpetology, 2010




Neurons have active electrical dynamics

* Neuronal membrane a capacitor o % I
e Chemical pumps maintain voltage
chemical gradients 9 =
- e
* Na*,Ca%* are high extracellularly - o o
* K* is high intracellularly v J S
* ‘resting’ voltage of around -70mV v HES .
] . o 3 —3
* Membrane is excitable v © o
* Na* current will depolarize N P o <
* K*will hyperpolarize the cell v Y ﬁf_;% : ©
¢ S <
¢ (&)
v 9%




lon channel proteins mediate currents

* lon channels mediate currents
 Specificity to particular ions
* Respond to chemical signals,
voltage

* Open and close stochastically

* Currents ~“pA

- T LTI AT
Correlation time ~5ms g_ 8 Lu | Closed
t, ms >

-

* VVoltage sensitivity leads to =
dramatic fast dynamics

* Collective action potentials trigger y
cells to signal

>
@




Molecular sensors are thermo-TRP channels

TG fibres

* Neurons that innervate
the pit organ are dense
with TRPA1, a thermo-
TRP channel (2010)

Inner cavity
Outer cavity

Pit membrane

* TRP family of ion channels

C 105 d 105

are often thermally i 2

. g 104 510 .

sensitive $ior] 5 10°]

* True infrared detection - g 10" g 10
not photochemical like 10 OthérTRPs 210" 3‘:OthersTRPs

vision 0] o]

01 10" 102 10° 10¢ 105 01 10" 102 10° 10¢ 105
Rattlesnake DRG (reads) Non-pit snake DRG (reads)

Gracheva et al, Nature, 2010



What are thermo-TRP channels?

* TRP channels are most thermally : o
sensitive single molecules in biology “
* Nobel prize in physiology in 2021
* Q10 values in the range of 10-100
* TRPV1 opens over a few K heat ,,
* TRPMS similar for cold I,
* All TRPs are cation channels mediating + N i
current !
* Sensitive to voltage, calcium, pip lipids, ...

* Mechanism of thermal sensitivity | LFe
debated (not here)

Ct
O‘.
A
N
2=

Patapoutian et al, Nat. Rev. Neuroscience, 2003



TRPA1 in pit-vipers is especially sensitive

* TRPA1 is a cold sensor in mammals b 05secinterval (0.25°)
. . 102’ Peak Q10=113,199
* TRPA1 in snakes is a hot sensor o
e Rattlesnake TRPA1 Maximal Q10 of 5*10% 2 10°]
100. wan
* Corresponds to 3x increase in activity for 102

1K change in temperature
* 3-5x more sensitive than TRPV1

5 10 15 20 25 30 35 40

Kang,.BBA Biomembranes, 2016
* Here, assume sigmoidal activation with 10

width 1K

W Boa
® Python

®©

R
N\

Normalized current
o o o o
» (e)]

0 e e
21 24 27 30 33 36 39 42 45
Temperature (°C)

Gracheva,... Julius et al, Nature, 2010




Behavioral response requires a very sensitive
detector

* Pit organ can detect a small mammal at 1m distance
* Back of the envelope calculation suggests ~1mK sensitivity
required

e Careful experiments suggest a single neuron has
robust neural response to heating of 1ImK

Gracheva

il .| H | ! Ll L | I |

Spontaneous A
action potentials
1 sec
B n 1] 11 Ll | " “hmwmw H“IW’ VITH S
With warm object — .
in field of view:
1 sec

Goris, R. C., & Nomoto, M. (1967). Comparative Biochemistry And Physiology, 23(3).



A mismatch

B Boa
| @ Python

o
©

* Individual channels sense ~1K

o
N
O\

Normalized current
o o
> o
\\’\

0 T T T T T T T 1
21 24 27 30 33 36 39 42 45
Temperature (°C)

* The pit organ must be ~1000x more sensitive.

* Cell senses AT that changes the likelihood of
opening by < .1%




Information is in principle contained in many
channels...

* A single channel can detect the temperature with accuracy oy ; ~ 1K

* N (independent) channels would give an estimate with error equal to

2 2
° T,N—UT,1/N'

1K

" OTN TN
e ~N = 10° channels required to accurately measure AT ~ 1mK



Information could also be read out from a
single channel read out for finite time

* A single channel event can record with accuracy o7 ; ~ 1K

10pA I (RN T AL

1 100ms

. . . T .
* Observing for a time 7 > 7, yields — ind. measurements
(0)

To 2

° U%,1(T) =7 911



Number of receptors and int. time bounds
accuracy of a temperature measurement

* Perfectly observing for time T with N receptors yields an error
estimate of

T T
* ofn(T) = Oﬁin ot 1, orn(T) = ;,p:n oT,1

 ‘Rate of information’ G (1/K?s), G<G,: G,= a_ ==

2 2
dt OT N 0T 1Topen

* Note: this absolute bound is not discouraging: in 100ms neuron
would need just N=10° channels.

e Still, by what mechanism could this be read out?
* Spike timing must contain information from ~10° channels
* How is this information integrated and amplified into a collective response?



How is collective response so much sharper
than individual channels?

* Hypothesis: TRPA1 channels are
embedded in a dynamical system
tuned close to a bifurcation

* Diverging susceptibility found near
bifurcation amplifies the effect a tiny
change in temperature makes to

. . to small change
single channel properties

Large response
/ &~

Order Parameter

l
Pc

Control Parameter



How is collective response so much sharper
than individual channels?

* Hypothesis: TRPA1 channels are
embedded in a dynamical system
tuned close to a bifurcation

* Diverging susceptibility found near
bifurcation amplifies the effect a tiny
change in temperature makes to

. . to small change
single channel properties

&~

AP Rate

/ Large response

TRP mediated current



Example: Nuclear criticality in a reactor

* Rythe reproduction number: # of decays each
decay triggers
* Ry<1 and the reactor will fizzle
* Ry>1 and the reactor will meltdown
 Effective timescale is ms

* An operating Nuclear plant averages an Ry=1 with
tiny fluctuations

* Control rods (s timescale) adjust the third digit of R, with
real time feedback

* Could very sensitively detect a change in R,

* Feedback signal is easy to come by:
* Small change in Ry quickly amplified




A Qualitative overview of our model
* In nuclear decay, each decay .
triggers R, additional decays Fast
neutrons @ Slow
: Control rods

Fast .
Voltage Slow
? Ca?* mediated

Pip metabolism

* Model: TRP channels activate
other TRP channels



A mechanism for fast positive feedback

Mammalian Heat sensitive TRP

p TRPV1 B
A P
open
-‘ 1-
42 °C
5 .
parmamensn . .
17 °C <
T ~
“s0oms 100 0 100 200

Mammalian cold sensitive TRP

)

TRPM8

open

-
50 ms N A AAYAVAVAVAYA

-100

* TRPs are voltage gated channels with a Temperature dependent V,,
* TRP channels activate other TRP channels electrically

Nilius et al, J Physiology, 2005



A mode detailed model

%/ _ (Veg=V) | Vinao Po(V — Vi o(T)) + \/(%) Vinasz (Po)(1 — Po)E(t)

TV TV

Int. elect. dynamics  TRP signal  Single (TRP) channel noise

when voltage reaches a threshold an action potential is fired
Signal is read out by timing of action potentials



TRP signal is sigmoidal in voltage,

temperature
CZ_‘; _ (VeqT; V). er“vf“ Po(V — Vi 2(T)) + \/(]TV—O) Vmaz(Po)(1 — Po)(t)
| | |
TRP signal
Py(V = Vi) = 1

1 +exp(—(V = Vy/3)/AV)

AV ~30mV,
V1,2 dependent on T, feedback (unspecified)

Vinax = Nigt,,/C is steady state w/ all open




TRP noise decreases with N /1,

V. (Vea=V) | Vinas Po(V — Vi o(T)) + \/(%) Vinasz (Po)(1 — Po)E(t)

dt TV TV

Int. elect. dynamics  TRP signal  Single (TRP) channel noise

Scale of noise decreases with increasing number of channels

Assumes channels act independently — conditioned on voltage and
temperature

We neglect noise from other sources, most prominently other channels



Qualitative dynamics 1

av (Veq o V) Vma:z: T0
— = Py(V — Vi o(T (—) Vinaz (Po)(1 — Po)E(t
dt U o 1/2(T)) +4/{ v ) Vmaz(Po)( 0)€(?)
4 P.(V) 4 a<0 Po(V)
t inter-spike time Igng inter-spike time
small variance large variance
> : p ==
V-Veq Veq V'Veq
) =) @ @ = #—@J—.—hi
Deterministic regime, spikes are regular Stochastic regime, spikes are sparse and random

. stable fixed point instable fixed point




Qualitative dynamics 2: feedback

dV (‘/eq - V) Vmaa:
R — +
dt TV TV

70

PO(V o V1/2(T)) + \/(ﬁ) Vmam(PO)(l - PO)f(t)

interspike time
too short

interspike time
too long




Response to a small temperature

* Before change in
temperature: Of
* Stochastic spikes

* Tuned near the —20}
bifurcation

TO + 1mK

oltage

* ChangeinT
e Bifurcation crossed ~
* Burst of spikes
* Slow adaptation -60¢

40}

time



Analyzing the proximity of the bifurcation

av Vea = V) Vi
_Vu=V)

= -~ - Po(V — V1 2(T)) + \/(;\,—0) Vimaz(Po)(1 — Po)§(t)

1

Po(V — ‘/1/2) — 1+ exp(—(V — Vl/z)/AV)

* For every value of AV/V,,,, < %there

is a critical point for V; ,, =V},
deﬁning AVI/Z — _V1/2 ‘I‘ Vb iS the
distance to the bifurcation



slowing of spike rate near the bifurcation

Spike rate vs AV, ,, /AV

« Away from bifurcation, spike 14
timescale is near 1/t
(~100Hz)

* Below the transition AV, ,,<0,
spikes are sparse

* Near but above the transition,

timescale has steep AV, /,
dependence 2 rate~ AV1/2 *:

 Steepness ™ AVl_/lz/2 0

-0.10 -0.05 0.00 0.05 0.10
AV4o/AV

RN
N

—
()

spike rate 1/<fgpike>

Barrier crossing Results modified from Hatchock and Sethna, Phys. Rev. Research, 2021



Understanding finite N

* Near the bifurcation noise
becomes important

Scaling: noise dominates when
N < (AV; /A7) 2

-1

Spike rate vs AV, /,

10°
10°

107

AV, 5/ AV

Barrier crossing Results modified from Hatchock and Sethna, Phys. Rev. Research, 2021



Noise and finite N

Spike rate vs AV, , (10x zoom)

* Near the bifurcation noise
becomes important

Scaling: noise dominates when 4Hz 106
3/2 7
N < (Avl/z/AV) /\ } 1‘88 ,
W |
- | |
Max slope scales as N1/3 Vo |
~ |
— rate~ /AVl/Z
Amplification: log slope at ~ N1/
bifurcation scales as N2/3 | Max slope ~ N3

-.01 0 .01

AV, o/ AV
Barrier crossing Results modified from Hatchock and Sethna, Phys. Rev. Research, 2021



Information rate from spiking?

* By looking at a spike train, how well could you infer temperature?
* Recall: absolute bound on information rate G, from single channel noise.

* Here: measure G, rate of information from spike rate
* Need <t_.>and Var(t,):

Spike rate scaled spike variance
. ‘ ‘ ‘ ‘
l 6 ]
4Hz 107 C\l/\ } N=106

Ad |10 | m
W -+
) ! \/
! ~
= >
K]
18 ‘ ‘ ‘ >

-.01 0 01 0 ‘ o - -

AV, 5/ AV 0 01



Information is (mostly) preservec in the
deterministic regime o
* We can define the Information ® 0.5|
fidelity
* Fraction of information in single 0.2
channels contained in spike train 0.1
T =G/Gy A
* Order 1 fraction preserved in L\m } N=106
deterministic regime! v
* BUT: away from bifurcation =
information is contained in tiny ‘%
changes in spike timing > . -




Information is accessible near the bifurcation

* Away from bifurcation information L —
is contained in tiny and likely 05|
unmeasurable changes in spike N
timing 0.2|
0.1
* We can put this in information 0

. .01
theory terms by adding extra AV, jo/ AV

stochasticity to the spiking

0.100}

0.050};

* Close proximity to the bifurcation ~
is essential for making information ool N
accessible ool 02 <t

AV, o/ AV .01



Parallels with cutting edge bolometry

gt
¥
.’.

Resistance (L)

> OT > (\R = (\I

From Zakosarenko et al

* Transition Edge Sensors are state of the art

for detecting heat

* |dea: sensor is superconducting element
near its superconducting transition upon
which incident radiation is focused

 Critical point amplifies a weak signal

* Circuit is voltage biased:

* Temperature too (high) low, current. (de)
increases (heating) cooling thermistor

e Self tunes to (superconducting) critical point

* Current through detector reads out

temperature

(Casual chat with Laura Newburgh)



Recap of the pit organ

Critical point / Bifurcation integrates information

Nature of the bifurcation:
* TRP ion channels are coupled electrically
» Saddle Node bifurcation separates quiet from firing

Functional role
* Information distributed in many (~10°) receptors
* AP rate Amplification near bifurcation
Tuning
* Feedback from AP rate onto V,/, naturally tunes to bifurcation

Further directions

Other systems?
* Chemoreception
* Hearing

Reverse engineering design principles

voltage

_ Spikeratevs AVy/;

-01 0

a=-1, AT=1mK

.01




E. Coli chemoreceptor arrays amplity signals

from many receptors
+Attr -Attr +Re -Rep

. . : 07—y —Y . . ¥ ¥
* To climb gradients E. coli must S i | |
sense ~1% changes in 2 065 f
concentration Lo
* Time derivative of concentration - 06} «
behaviorally relevant [ ]

° SyStem mUSt Operate over 104 Sourjikar;d Btlarg PNAS 2002c
changes in background

* Response is strongly amplified

* Response perfectly adapts

* Individual cells are noisy

AN AN TN \nJ
SN NN VN Lo AN Y
Y e W N g T A S L VW A )
PP RN Y o NN p NI e pA

NS AT M S AN SAN e AN
0 500
Time, ¢ (s)

Mattingly et al, Nat Phys 2021

Kinase output, a(t)



Chemoreceptors are arranged in a lattice with
signaling enzymes

(A)

Receptor
| trimers |(
of dimers

CheA

Cassidy et al. Communications Biology. 2020



Reinterpreting biochemistry as self-tuning to
an active percolation-like critical point

e (in)activity spreads through SIS e

}un)bound receptors ‘ O

* Feedback tunes to a bifurcation
* Large amplification

 Large noise (critical fluctuations)

Receptor

L

Inactive Bound

Signaling activity

r

| Bl

Derek Sherry

Large response
to small change
/

-
Receptor occupancy

.-

Isabella Graf



Hair cells are poised near a Hopf bifurcation

* We can hear over >100dB

* 10 orders of magnitude in incident
power

* Hair cells detect sound

* ‘compressive nonlinearity’, hair cell
displacement ~1/3 power of
pressure amplitude

* Insilence hair cells spontaneously
vibrate, emitting auto-acoustic
emissions

* implies active process

e ~2000, Magnasco, Hudspeth and
Julicher: Hopf bifurcation

e Confirmed in exlperiments with
bullfrog hair cells (10Hz)

(Reichenbach and Hudspeth, 2014)



Hair cells and basilar membrane that detect
sound are poised near a Hopf bifurcation

LN U1 R R e e BNV i‘f
'J\\ e 7/ 10 ’jf: ) A\ i
B\ QU Y ||\ N ; Cochlea )
W ||\ RS Middle Audi lwt
A T %ﬁ e | ear el Fe /\/\n  Basilar Membran
I, TN e i L 1% v VU\J [
2 ‘4.:. »\ \,_' ‘A‘»’ It L ‘)'; ,
b = LEEN 4 B v
| lﬁ ':".: M“r | ow RW ’ —X 2 : .
ity B « 7 =(Kye™ —mw* + i§(x)w)
/ \iets ‘
(Reichenbach and Hudspeth, 2014 — . .
P ) = stiffness — mass + friction
10 f O in vivo cochlea
— 7/ hemicochlea
£ s ===+ fit to hemicochlea
z - @
g 1
2 o?-.
S / (o} A
3 01 /g
8 f Z,
o P
°
Q
0.01 L. = ; : :
0 2 4 6 8 10
distance from cochlear base (mm)

Asheesh Momi Julian Rubinfien Isabella Graf



Reverse Engineering I: Are these systems near
ohysical limits?

* Chemo-sensing:
* Accuracy of a concentration measurement bounded by shot noise of
single particle diffusion to the cell surface (Berg and Purcell 1977)

* Behaviorally relevant for E. coli: measuring concentration change driven
by their own motion.

* In progress: What Is this bound and how close do E. coli get?

* Pit Organs:
 Thermal fluctuations in heat bound accuracy of thermal imaging

* In addition to G<G, must also have G<G, with G, related to the heat
capacity and thermal diffusion time of the neurons

* What is this bound and how close are pit nerves to it?



Reverse Engineering Il: Do these systems
efficiently use energy?

* Chemo-sensing
* Individual chemoreceptors must communicate with each other
* Sensory information must be sent to the motor
 Sensory apparatus burns ~10°K;T/s
e Can we account for this?

* Pit Organs:

* Single TRP channels must communicate their local information
to the ensemble, fighting against thermal noise in the local
voltage

* Every opening of a TRP channel dissipates ~10°kgT of free energy
(around 10''K;T/s per neuron)

 Can we understand these numbers?



Conclusions

* Information can be integrated from many
receptors through the sensitivity of transitions

* Thermosensation in the pit organ
* Information from ~10° channel events into APs
* Amplification by proximity to bifurcation Spike rate vs AV, /5
* Tuning by feedback from AP rate onto TRP V,, P

* Other systems likely use bifurcations and critical
points for broadly similar functions

* Lots of work for physicists in reverse
engineering these systems
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Questions?




Energetic bounds

Moving a thermodynamic system
requires sub-extensive energy

o
S>2L(Xi, Af) 4 L7(Xi, As)

A+

,-'I‘R _ =2
wTR = 22 g
— wNC —won _AF

SR Wtotal — WTR + WNC \X
- o S 0 080808 . n-ln1n-|| ' s 6 58000 n s s 0 e

Bryant and BBM, Energy Dissipation Bounds for Autonomous
thermodynamic Cycles. PNAS, 2020

Sam Bryant

Time asymmetric data implies
entropy production
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