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Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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Hierarchy problem

Why is the Higgs 
boson so light?

See also: quantum gravity
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4Questions in fundamental physics
Theoretical and experimental questions motivate a deep 

exploration of the fundamental structure of nature

Hierarchy problem Strong CP

Why is the Higgs 
boson so light?

Why do neutrons have 
no dipole moment?
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>99% of pictures 
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5Questions in fundamental physics
Theoretical and experimental questions motivate a deep 

exploration of the fundamental structure of nature

See also: dark energy
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6Questions in fundamental physics
Theoretical and experimental questions motivate a deep 

exploration of the fundamental structure of nature

See also: dark energy
See also: Where did all the anti-
particles go?  (Baryogengesis)
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Dark Matter Flavor puzzles

What is the extra 
gravitational matter?

Why do neutrinos 
have a mass?
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7Addressing the questions

Heavy Photon Search, …Large Hadron Collider

Dark Matter with 
LZ, XENON, …

Dark matter/energy 
with Vera Rubin, 

CMB-S4, …
Fermilab, KEK neutrino 

experiments, …

+ others !
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8Addressing the questions

Material interactions 
with Geant4 Theory Calculations

Advanced acceleratorsN-body simulations Supercomputers

+ others !

Image sources: Dark Sky Simulations collaboration, SLAC, NERSC, Fermilab Today / Geant4, Peskin and Schroeder 



Key challenge and opportunity: hypervariate phase space 
& hyper spectral data
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We detect these 
particles with 

O(100 M) 
readout channels

Not to scale!

Key challenge and opportunity: hypervariate phase space 
& hyper spectral data

Typical collision events 
at the LHC produce 
O(1000+) particles
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©Elephant Listening Project

Everyone is aware that there must 
be new physics, but maybe we 

need hypervariate vision to see it?

12Hypervariate vision with deep learning

However, recent advances 
have opened up a new way 
of looking at our data.  This 

hypervariate vision will lead 
to a deeper understanding 

of nature and perhaps 
surprises along the way…

We have been conducting 
“multivariate” analysis of 

collision events for many years
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13Hypervariate vision with deep learning

We need innovative computational techniques to 
make the data-driven discoveries of the future.

This is not just about improving precision, 
it is about enabling new science!
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Theory of everything

Physics simulators

Detector-level observables

Pattern recognition

Nature

Detector-level observables

Pattern recognition

Experiment

This is where most machine learning is being applied.
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Nature

Detector-level observables

Pattern recognition

Experiment

This is where most machine learning is being applied.
I won’t discuss this area at all for the remainder of the talk
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17Data analysis in fundamental physics

Nature

Detector-level observables

Pattern recognition

Experiment

Readout

Noise 
mitigation 

Calibration 

Pattern 
recognition 

Analysis 
Observables

…many exciting topics I’d be happy to discuss later!
I won’t discuss this area at all for the remainder of the talk

Lorentz Covariant 
Networks

Uncertainty-aware 
learning

S. Qiu, S. Han, X. Ju, BN, H. Wang
2203.05687

A. Ghosh, BN, D. Whiteson
PRD 104 (2021) 056025, 2105.08742

Algorithmic 
fairness 

(“decorrelation”)

O. Kitouni, BN, C. Weisser, M. Williams
JHEP 04 (2021) 70, 2010.09745

Symmetry 
Discovery

K. Desai, BN, J. Thaler 
PRD (2022), 2112.05722
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Theory of everything

Physics simulators

Detector-level observables

Pattern recognition

Nature

Detector-level observables

Pattern recognition

Experiment

A growing toolkit called “generative models” are being 
developed to accelerate or augment simulations.
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Theory of everything

Physics simulators

Detector-level observables

Pattern recognition

Nature

Detector-level observables

Pattern recognition

Experiment

This is the “inverse” direction, where we use simulations 
to infer properties of the fundamental theory.
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Theory of everything

Physics simulators

Detector-level observables

Pattern recognition

Nature

Detector-level observables

Pattern recognition

Experiment

There is a growing need for simulation-independent 
methods that allow us to look for unanticipated scenarios.
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Forward Models
(fast simulation)

Inverse Models
(unfolding)

Simulation-free
(anomaly detection)

I’ll focus on three core, cross-cutting areas of ML ⋂ Physics
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Forward Models
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Inverse Models
(unfolding)

Simulation-free
(anomaly detection)

I’ll focus on three core, cross-cutting areas of ML ⋂ Physics

To illustrate these exciting topics, I’ll give one vignette per area
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Forward Models
(fast simulation)

Inverse Models
(unfolding)

Simulation-free
(anomaly detection)

I’ll focus on three core, cross-cutting areas of ML ⋂ Physics

To illustrate these exciting topics, I’ll give one vignette per area



25Introduction: generative models

A generator is nothing other than a function 
that maps random numbers to structure.

Deep generative models: the map is a deep neural network.



26Introduction: GANs
Generative Adversarial Networks (GANs):  
A two-network game where one maps noise to structure 
and one classifies images as fake or real.

{real,fake}

G
D

D

noise

When D is maximally 
confused, G will be 
a good generator physics-based 

simulator or data



27Accelerating Detector Simulations

η
z

φ

Grayscale images:
pixel intensity 

= energy deposited

η
z

φ

η
z

φ

Calorimeters are often  
the slowest to simulate  

stopping particles requires simulating 
interactions of all energies
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GANs and related deep generative models are 
promising tools for fast approximate simulations



29Solution: CaloGAN

GANs and related deep generative models are 
promising tools for fast approximate simulations

These tools are automated, which enables portability

They are fast, can be readily retrained, 
and don’t take much disk space



30Solution: CaloGAN

GANs and related deep generative models are 
promising tools for fast approximate simulations

These tools are automated, which enables portability

We also have full control over the physics:

Figure 4. Interpolation across physical range of x0 as a conditioning latent factor for e+ showers.
Note in the ATLAS coordinate system, x represents the vertical direction in this dataset. Each
point in the interpolation is an average of 10 showers, with each point along the traversal build
from an identical latent prior z.

Figure 5. Interpolation across physical range of ✓ as a conditioning latent factor for e+
showers, with ✓ increasing from left to right. Each point in the interpolation is an average
of 10 showers subtracted from the middle point along the interpolation path, with each point
along the traversal build from an identical latent prior z.

controllability of generation procedures, but much future work remains. In particular, a thorough
investigation around dynamics between the attribute estimation portion of the network, ⌅, and
the overall training objective should be pursued, particularly as it relates to the final fidelity of
the attribute estimates. In addition, future work should examine newer GAN formulations (as
outlined in Sec. 3) and their ability to improve image quality.

[1] Flynn J 2015 Computing Resources Scrutiny Group Report Tech. Rep. CERN-RRB-2015-014 CERN Geneva
URL https://cds.cern.ch/record/2002240

[2] Karavakis E, Andreeva J, Campana S, Gayazov S, Jezequel S, Saiz P, Sargsyan L, Schovancova J, Ueda
I and the Atlas Collaboration 2014 Journal of Physics: Conference Series 513 062024 URL http:
//stacks.iop.org/1742-6596/513/i=6/a=062024

[3] Bozzi C 2015 LHCb Computing Resource usage in 2014 (II) Tech. Rep. LHCb-PUB-2015-004. CERN-LHCb-
PUB-2015-004 CERN Geneva URL https://cds.cern.ch/record/1984010

[4] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y 2014
ArXiv e-prints (Preprint 1406.2661)

[5] Kingma D P and Welling M 2013 ArXiv e-prints (Preprint 1312.6114)
[6] Kadurin A, Aliper A, Kazennov A, Mamoshina P, Vanhaelen Q, Khrabrov K and Zhavoronkov A 2016

Oncotarget 8 ISSN 1949-2553
[7] Ravanbakhsh S, Lanusse F, Mandelbaum R, Schneider J and Poczos B 2016 (Preprint 1609.05796)
[8] Schawinski K, Zhang C, Zhang H, Fowler L and Santhanam G K 2017 Monthly Notices of the Royal

Astronomical Society 467 L110–L114 (Preprint 1702.00403)
[9] Mustafa M, Bard D, Bhimji W, Al-Rfou R and Lukić Z 2017 ArXiv e-prints (Preprint 1706.02390)

[10] Paganini M, de Oliveira L and Nachman B 2017 (Preprint 1705.02355)

fix fluctuations, sweep shower location
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Pions deposit much less 
energy in the first layers; 
leave the calorimeter with 

significant energy  

Energy in first layer (GeV)
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Solution: CaloGAN
M. Paganini, L. De Oliveira, BN, PRL 120 (2018) 042003
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Solution: CaloGAN

Time to generate an event 
is orders of magnitude 
faster than Geant4 and 
independent of energy

M. Paganini, L. De Oliveira, BN, PRL 120 (2018) 042003
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Pions deposit much less 
energy in the first layers; 
leave the calorimeter with 
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Solution: CaloGAN

Time to generate an event 
is orders of magnitude 
faster than Geant4 and 
independent of energy

ATLAS now uses a 
CaloGAN-like approach 

and will use it to generate 
billions of showers!

ATLAS, 2109.02551

M. Paganini, L. De Oliveira, BN, PRL 120 (2018) 042003



34Future of Deep Generative Models

Next frontier: physics-informed  
generative models

• Fast simulation for next-gen experiments 
• Flexible, “non-parametric” functions for 

phenomenological models  
• Hadronization (quarks/gluons → hadrons) 
• Dark matter N-body → baryons

Methods

Science

Goal: maintain speed, 
improve precision
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Figure 5. Normalized, di↵erential cross-sections of Thurst (top left), Thrust major (top right),
Thrust minor (lower left), and Sphericity (lower right) for Herwig, Herwig with HADML, and for
data from DELPHI at LEP. Error bars on the predictions represent statistical uncertainties.

M↵� =
X

p↵i p
�
i , (3.2)

where ↵,� are the spatial momentum indices, and the sum runs over the same particles as

in Eq. 3.1. Sphericity is defined as 3
2(�2+�3) for eigenvalues �i of the 3⇥ 3 matrix defined

in Eq. 3.2 and �3  �2  �1. Hadronization shifts event shapes (see e.g., Ref. [106]) and so

these observables are sensitive to hadronization modeling. Figure 5 shows that HADML

agrees with Herwig within 10% across most of the spectra, which itself agrees with data at

a similar level. Individual particle spectra are shown in Fig. 6 for the transverse momenta

along the Thurst major and minor directions. The level of agreement is similar to the event

shapes where there is su�cient statistical power.

– 9 –

A. Ghosh, X. Ju, BN, A. Siodmok, 2203.12660
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GAN Hadronization
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35Outline for today

Forward Models
(fast simulation)

Inverse Models
(unfolding)

Simulation-free
(anomaly detection)

I’ll focus on three core, cross-cutting areas of ML ⋂ Physics

To illustrate these exciting topics, I’ll give one vignette per area
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Differential cross section measurements are central to 
collider physics & are increasingly important in neutrino physics
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x

dN
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These allow us to compare data with theory 
for a variety of down-stream science goals
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Differential cross section measurements are central to 
collider physics & are increasingly important in neutrino physics

x

dN
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x

These allow us to compare data with theory 
for a variety of down-stream science goals

Current approaches use bins 
and are limited in the number of 

input/output dimensions.



39Deconvolution/Unfolding

Differential cross section measurements are central to 
collider physics & are increasingly important in neutrino physics

x

dN
/d

x

These allow us to compare data with theory 
for a variety of down-stream science goals

Current approaches use bins 
and are limited in the number of 

input/output dimensions.

Can we go unbinned 
and high-dimensional?



40Deconvolution/Unfolding 1 1

1

1
1

1
1

1
1

1

1
1

1 1

1
1

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

1
1

1
1

1

1

1

1

1

1 1 1

11
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1
1

1
1

1
1

1

1
1

1 1

1
1

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

1
1

1
1

1

1

1

1

1

1 1 1

11
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

Measure thisWant this

i.e. remove detector distortions
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p(meas. | true) = “response matrix” or “point spread function”

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)



42Deconvolution/Unfolding

p(meas. | true) = “response matrix” or “point spread function”

Challenge: measured is hyperspectral and true is 
hypervariate … p(meas. | true) is intractable !!

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)



43Deconvolution/Unfolding

p(meas. | true) = “response matrix” or “point spread function”

Challenge: measured is hyperspectral and true is 
hypervariate … p(meas. | true) is intractable !!

However: we have simulators that we can 
use to sample from p(meas. | true) 

→ Likelihood-free inference

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)



44Solution: ML-based Unfolding

We have introduced new machine learning methods 
capable of unbinned, high-dimensional unfolding.

This will radically change the cross section 
measurement programs of collider and neutrino physics.
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[ AB talk at ICHEP 2020; cf. ALEPH, EPJC 2004]
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Figure 2. Measured cross sections, normalized to the inclusive jet production cross section, as a function of the jet transverse
momentum (top left) and jet pseudorapidity (top right), lepton-jet momentum balance (qjet

T
/Q) (lower left), and lepton-jet

azimuthal angle correlation (��jet) (lower right). Predictions obtained with the pQCD (corrected by hadronization effects,
“NP”) are shown as well. Predictions obtained with the TMD framework are shown for the qjet

T
/Q and ��jet cross sections. At

the bottom, the ratio between predictions and the data are shown. The gray bands represent the total systematic uncertainty
of the data; the bars represent the statistical uncertainty of the data, which is typically smaller than the marker size. The error
bar on the NNLO calculation represents scale, PDF, and hadronization uncertainties. The statistical uncertainties on the MC
predictions are smaller than the markers.

ep scattering

53ML-based Unfolding: Science
We are already delivering science results with this methodology 
(more on the way!); R&D is required to extract the full benefits
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Figure 2. Measured cross sections, normalized to the inclusive jet production cross section, as a function of the jet transverse
momentum (top left) and jet pseudorapidity (top right), lepton-jet momentum balance (qjet

T
/Q) (lower left), and lepton-jet

azimuthal angle correlation (��jet) (lower right). Predictions obtained with the pQCD (corrected by hadronization effects,
“NP”) are shown as well. Predictions obtained with the TMD framework are shown for the qjet

T
/Q and ��jet cross sections. At

the bottom, the ratio between predictions and the data are shown. The gray bands represent the total systematic uncertainty
of the data; the bars represent the statistical uncertainty of the data, which is typically smaller than the marker size. The error
bar on the NNLO calculation represents scale, PDF, and hadronization uncertainties. The statistical uncertainties on the MC
predictions are smaller than the markers.
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Figure 2. Measured cross sections, normalized to the inclusive jet production cross section, as a function of the jet transverse
momentum (top left) and jet pseudorapidity (top right), lepton-jet momentum balance (qjet

T
/Q) (lower left), and lepton-jet

azimuthal angle correlation (��jet) (lower right). Predictions obtained with the pQCD (corrected by hadronization effects,
“NP”) are shown as well. Predictions obtained with the TMD framework are shown for the qjet

T
/Q and ��jet cross sections. At

the bottom, the ratio between predictions and the data are shown. The gray bands represent the total systematic uncertainty
of the data; the bars represent the statistical uncertainty of the data, which is typically smaller than the marker size. The error
bar on the NNLO calculation represents scale, PDF, and hadronization uncertainties. The statistical uncertainties on the MC
predictions are smaller than the markers.
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Figure 2. Measured cross sections, normalized to the inclusive jet production cross section, as a function of the jet transverse
momentum (top left) and jet pseudorapidity (top right), lepton-jet momentum balance (qjet

T
/Q) (lower left), and lepton-jet

azimuthal angle correlation (��jet) (lower right). Predictions obtained with the pQCD (corrected by hadronization effects,
“NP”) are shown as well. Predictions obtained with the TMD framework are shown for the qjet

T
/Q and ��jet cross sections. At

the bottom, the ratio between predictions and the data are shown. The gray bands represent the total systematic uncertainty
of the data; the bars represent the statistical uncertainty of the data, which is typically smaller than the marker size. The error
bar on the NNLO calculation represents scale, PDF, and hadronization uncertainties. The statistical uncertainties on the MC
predictions are smaller than the markers.

Data points = 
machine learning
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8-dimensional phase 
space for exploring proton 

structure & universality 
(“factorization”)

Jetp

e e

We are already delivering science results with this methodology 
(more on the way!); R&D is required to extract the full benefits
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Figure 2. Measured cross sections, normalized to the inclusive jet production cross section, as a function of the jet transverse
momentum (top left) and jet pseudorapidity (top right), lepton-jet momentum balance (qjet

T
/Q) (lower left), and lepton-jet

azimuthal angle correlation (��jet) (lower right). Predictions obtained with the pQCD (corrected by hadronization effects,
“NP”) are shown as well. Predictions obtained with the TMD framework are shown for the qjet

T
/Q and ��jet cross sections. At

the bottom, the ratio between predictions and the data are shown. The gray bands represent the total systematic uncertainty
of the data; the bars represent the statistical uncertainty of the data, which is typically smaller than the marker size. The error
bar on the NNLO calculation represents scale, PDF, and hadronization uncertainties. The statistical uncertainties on the MC
predictions are smaller than the markers.
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Figure 2. Measured cross sections, normalized to the inclusive jet production cross section, as a function of the jet transverse
momentum (top left) and jet pseudorapidity (top right), lepton-jet momentum balance (qjet

T
/Q) (lower left), and lepton-jet

azimuthal angle correlation (��jet) (lower right). Predictions obtained with the pQCD (corrected by hadronization effects,
“NP”) are shown as well. Predictions obtained with the TMD framework are shown for the qjet

T
/Q and ��jet cross sections. At

the bottom, the ratio between predictions and the data are shown. The gray bands represent the total systematic uncertainty
of the data; the bars represent the statistical uncertainty of the data, which is typically smaller than the marker size. The error
bar on the NNLO calculation represents scale, PDF, and hadronization uncertainties. The statistical uncertainties on the MC
predictions are smaller than the markers.

Data points = 
machine learning

PRL 128 (2022) 132002, 2108.12376

8-dimensional phase 
space for exploring proton 

structure & universality 
(“factorization”)

Jetp

e e

We are already delivering science results with this methodology 
(more on the way!); R&D is required to extract the full benefits

w/V. Mikuni
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e+e- scattering

56ML-based Unfolding: Science

Data points = 
machine learning

Long-standing tension 
(~3σ) between methods 
for measuring the strong 

coupling constant.

Goal: Use ML to shed 
light on this issue.

w/A. Badea, Y.-J. Lee, J. Thaler

We are already delivering science results with this methodology 
(more on the way!); R&D is required to extract the full benefits



57ML-based Unfolding: Science

neutrino 
scattering

Data points = 
machine learning

w/C. Wilkinson and T. Kikawa

Highly-variable detector 
response in T2K detector can be 

addressed with ML unfolding.

n

ν ℓ

p

?

We are already delivering science results with this methodology 
(more on the way!); R&D is required to extract the full benefits
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58The future of likelihood-free Inference

Next frontier: differentiable simulations 

• Detector optimization 
• Cross sections from ATLAS and T2K/LArTPC 
• Cross sections from legacy data (HERA/LEP/SLD)

Methods

Science

Goal: optimal combination of 
simulations & machine learning 
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59The future of likelihood-free Inference

Next frontier: differentiable simulations 

• Detector optimization 
• Cross sections from ATLAS and T2K/LArTPC 
• Cross sections from legacy data (HERA/LEP/SLD)

Methods

Science

Goal: optimal combination of 
simulations & machine learning 

BN and S. Prestel, 2208.02274

Taylor expand events in 
strong coupling constant!



60Outline for today

Forward Models
(fast simulation)

Inverse Models
(unfolding)

Simulation-free
(anomaly detection)

I’ll focus on three core, cross-cutting areas of ML ⋂ Physics

To illustrate these exciting topics, I’ll give one vignette per area



61Anomaly Detection

Nearly all searches for new particles are signal-model 
driven.  We have introduced a new model agnostic program.

AD in fundamental physics is inherently different than other 
areas of science and industry - we need new approaches.



62Anomaly Detection

Nearly all searches for new particles are signal-model 
driven.  We have introduced a new model agnostic program.

AD in fundamental physics is inherently different than other 
areas of science and industry - we need new approaches.

SUSY

quark-proxy 
4-vector 

(“jet”)

+Simple 
combinations of 
4-vectors, e.g. 

invariant masses



63Anomaly Detection

Nearly all searches for new particles are signal-model 
driven.  We have introduced a new model agnostic program.

AD in fundamental physics is inherently different than other 
areas of science and industry - we need new approaches.

?



64Overview of New Ideas

I like to categorize new ideas based on the core 
assumption about the new physics, which is 

intimately related to the technique supervision

Unsupervised = no labels 
Weakly-supervised = noisy labels 
Semi-supervised = partial labels 

Supervised = full label information

This is most searches.  You simulate the signal (label 
= 1), simulate the background (label = 0) and “train” 

a classifier to distinguish the 1’s from the 0’s.



65Unsupervised

Typically, the goal of these methods is to look 
for events with low p(background)

Unsupervised = no labels

M. Farina, Y. Nakai, D. Shih, 1808.08992; T. Heimel, G. Kasieczka, T. Plehn,  
J. Thompson, 1808.08979; … V. Mikuni, BN, D. Shih, 2111.06417+ many more

One strategy (autoencoders) is to try to compress events 
and then uncompress them.  When x = 

uncompress(compress(x)), then x probably has low p(x).



66Weakly-supervised

Typically, the goal of these methods is to look for events with 
high p(possibly signal-enriched)/p(possibly signal-depleted)

Weakly-supervised = noisy labels

E. Metodiev, BN, J. Thaler, 1708.02949; J. Collins, K. Howe, BN, 1805.02664; + many more
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

Signal enriched Signal depleted



67Semi-supervised

Typically, these methods use some signal 
simulations to build signal sensitivity

Semi-supervised = partial labels

vs

e.g. SM background 
versus many signals
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68Overview of New Ideas

Unsupervised Weakly 
supervised

Signal is rare  
(low p)

Signal is an 
over density 
(high p ratio)

Approach:

BSM 
assumption

Main 
drawback

rare is not invariant* 
under coordinate 
transformations!  

need two samples 

*for a detailed discussion about this, see G. Kasieczka et al., 2209.06225
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69Overview of New Ideas

Unsupervised Weakly 
supervised

Signal is rare  
(low p)

Signal is an 
over density 
(high p ratio)

Approach:

BSM 
assumption

Main 
drawback

rare is not invariant* 
under coordinate 
transformations!  

Cannonical example: 
resonances!

*for a detailed discussion about this, see G. Kasieczka et al., 2209.06225
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Generically true when there are on-shell new particles 
or transient phenomena in time series data
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Generically true when there are on-shell new particles 
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generate noisy labels.
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First: we will need to generate noisy labels.
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Extended 
feature space 
for machine 

learning
(Shown as 1D, but can be many-dimensional)

J. Collins, K. Howe, BN,  
PRL 121 (2018) 241803

x

Resonant Anomalies

+many more
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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1 Introduction

The nature of dark matter, which today is known to account for about 27% of the total energy density in
the universe [1] and thus contributes more than 5 times as much as ordinary matter, is one of the most
important questions the Standard Model of particle physics (SM) fails to answer in a satisfactory way.
Weakly Interacting Massive Particles (WIMPs) are among the primary candidates for dark matter and are
being searched for via many different experimental approaches. These comprise searches for astrophys-
ical WIMPs through direct and indirect detection as well as collider searches which offer the possibility
of producing WIMPs – either directly or in the decay of other, more heavy exotic particles. Furthermore,
lepton colliders offer unique capabilities to probe WIMPs via energy scans (to determine their mass) and
beam polarisations (to determine their couplings). At collider searches, the tested scenarios range from
simplified signatures to complete models [2]. For complete models the full particle content, their mass
spectra, and interactions among themselves and with SM particles are available for experimental tests. In
a simplified setup, the generic signature to search for is WIMP pair production via an effective coupling
between WIMPs and SM particles. The effective coupling can be modeled using an intermediate medi-
ator particle of a certain mass. While dark matter particles do not interact with the detector material and
escape detection, visible particles recoiling against WIMPs can be used to identify this signature. This
process is being searched for at the LHC considering all kinds of visible particles [3–5]. In case of lepton
colliders, WIMP searches are performed using a photon from initial state radiation (ISR), as illustrated
in Fig. 1. To date the only lepton collider bounds on WIMPs via the mono-photon signature have been
derived from LEP results [6–8].

Figure 1: Visualisation of the mono-photon process e+e� ! ccg as a pseudo-Feynman diagram.

While direct detection experiments and WIMP production at hadron colliders always require non-
vanishing coupling to quarks, searches at lepton colliders depend only on the couplings to leptons, spe-
cifically the electron. Therefore, results from lepton colliders cannot be compared to those from hadron
collider or direct detection without making model assumptions on the relative strengths of the coupling
to leptons and quarks.

A connection between the couplings to leptons and to quarks can be made by requiring that the
relic abundance of a thermally produced WIMP should not be higher than the relic density of dark
matter observed today, which constrains the couplings of the WIMP and the mediator to the various SM
particles from below. Based on this constraint, the interplay between direct and indirect detection as well
as collider searches has been studied in a global likelihood analysis based on an effective field theory
(EFT) ansatz for the example of a singlet-like Majorana fermion WIMP [9]. This example shows that
there are significant regions in parameter space not probed by the LHC that can be covered by future
high-energy lepton colliders. The coverage by a future e+e� collider is based on projections obtained in
a rather old study [10].

In this paper, we re-analyse the mono-photon signature using a full simulation of the ILD detector
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 8: Distributions of the measured collision
p
ŝ when the outgoing photon is captured

and subtracted from the initial collision energy (left), and computed using only the final
state hadrons in the event (right)

is lost and the collision CoM must be obtained through measurements of the final-state
hadrons. Note that the highest pT photon is always used for these calculations. In the
photon-measured case, if the true ISR photon is out of acceptance, the predicted

p
ŝ will be

significantly different from the true one. In the hadron-measured case, the selected photon
is excluded from the calculation of

p
ŝ.

Figure 8 shows distributions of these two
p
ŝ measurements for the background and both

signal hypotheses. The incorporation of detector information gives each resonance a non-
negligible width due to smearing introduced by detector resolution. As a result, the signal-
to-noise in the signal region is lower. As seen in Table 2, this width can also create some
signal contamination in the sideband. Both of these effects make the discrimination task
more challenging. In the photon-measured case, the signal and Z peaks are approximately
symmetric, with the width dominated by the photon energy resolution. The high-

p
ŝ tail in

the 750 GeV case is the result of events where the true ISR photon is out of acceptance and a
random photon (the next highest pT one) is used to compute

p
ŝ. In the hadron-measured

case, the signal peaks are asymmetric because there are both resolution and acceptance
effects playing a role. The Z peak is sharper for the hadron-measured case compared with
the photon-measured case because the absolute energy resolution is better at low pT : for
the hadron-measured case, all of the particles are . mZ while for the photon-measured
case, the photon energy is nearly

p
s.

Performance of the method can be found in Figures 9 and 10, for the photon-measured
and hadron-measured

p
ŝ, respectively. The signal significance is calculated using the signal

region that is defined by the
p
ŝ measure of interest, and is not normalized to the original

truth sensitivity. Although the sensitivity is generally diminished by detector effects, there
is still strong enhancement for a variety of signal injections, representing potential for this
method in real collision data. Future innovations on hardware (e.g. increased acceptance)
and software (e.g. combining photon- and hadron-measurements) may be able to close any
remaining gaps between the truth

p
ŝ and the reconstructed version(s).

These studies also indicate the effectiveness of the method in a real analysis context

– 12 –
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challenges to scale up (methods and computing*), but the 

early studies are exciting and cross-cutting
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Figure 8: Distributions of the measured collision
p
ŝ when the outgoing photon is captured

and subtracted from the initial collision energy (left), and computed using only the final
state hadrons in the event (right)

is lost and the collision CoM must be obtained through measurements of the final-state
hadrons. Note that the highest pT photon is always used for these calculations. In the
photon-measured case, if the true ISR photon is out of acceptance, the predicted

p
ŝ will be

significantly different from the true one. In the hadron-measured case, the selected photon
is excluded from the calculation of

p
ŝ.

Figure 8 shows distributions of these two
p
ŝ measurements for the background and both

signal hypotheses. The incorporation of detector information gives each resonance a non-
negligible width due to smearing introduced by detector resolution. As a result, the signal-
to-noise in the signal region is lower. As seen in Table 2, this width can also create some
signal contamination in the sideband. Both of these effects make the discrimination task
more challenging. In the photon-measured case, the signal and Z peaks are approximately
symmetric, with the width dominated by the photon energy resolution. The high-

p
ŝ tail in

the 750 GeV case is the result of events where the true ISR photon is out of acceptance and a
random photon (the next highest pT one) is used to compute

p
ŝ. In the hadron-measured

case, the signal peaks are asymmetric because there are both resolution and acceptance
effects playing a role. The Z peak is sharper for the hadron-measured case compared with
the photon-measured case because the absolute energy resolution is better at low pT : for
the hadron-measured case, all of the particles are . mZ while for the photon-measured
case, the photon energy is nearly

p
s.

Performance of the method can be found in Figures 9 and 10, for the photon-measured
and hadron-measured

p
ŝ, respectively. The signal significance is calculated using the signal

region that is defined by the
p
ŝ measure of interest, and is not normalized to the original

truth sensitivity. Although the sensitivity is generally diminished by detector effects, there
is still strong enhancement for a variety of signal injections, representing potential for this
method in real collision data. Future innovations on hardware (e.g. increased acceptance)
and software (e.g. combining photon- and hadron-measurements) may be able to close any
remaining gaps between the truth

p
ŝ and the reconstructed version(s).

These studies also indicate the effectiveness of the method in a real analysis context
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1 Introduction

1 Introduction

The nature of dark matter, which today is known to account for about 27% of the total energy density in
the universe [1] and thus contributes more than 5 times as much as ordinary matter, is one of the most
important questions the Standard Model of particle physics (SM) fails to answer in a satisfactory way.
Weakly Interacting Massive Particles (WIMPs) are among the primary candidates for dark matter and are
being searched for via many different experimental approaches. These comprise searches for astrophys-
ical WIMPs through direct and indirect detection as well as collider searches which offer the possibility
of producing WIMPs – either directly or in the decay of other, more heavy exotic particles. Furthermore,
lepton colliders offer unique capabilities to probe WIMPs via energy scans (to determine their mass) and
beam polarisations (to determine their couplings). At collider searches, the tested scenarios range from
simplified signatures to complete models [2]. For complete models the full particle content, their mass
spectra, and interactions among themselves and with SM particles are available for experimental tests. In
a simplified setup, the generic signature to search for is WIMP pair production via an effective coupling
between WIMPs and SM particles. The effective coupling can be modeled using an intermediate medi-
ator particle of a certain mass. While dark matter particles do not interact with the detector material and
escape detection, visible particles recoiling against WIMPs can be used to identify this signature. This
process is being searched for at the LHC considering all kinds of visible particles [3–5]. In case of lepton
colliders, WIMP searches are performed using a photon from initial state radiation (ISR), as illustrated
in Fig. 1. To date the only lepton collider bounds on WIMPs via the mono-photon signature have been
derived from LEP results [6–8].

Figure 1: Visualisation of the mono-photon process e+e� ! ccg as a pseudo-Feynman diagram.

While direct detection experiments and WIMP production at hadron colliders always require non-
vanishing coupling to quarks, searches at lepton colliders depend only on the couplings to leptons, spe-
cifically the electron. Therefore, results from lepton colliders cannot be compared to those from hadron
collider or direct detection without making model assumptions on the relative strengths of the coupling
to leptons and quarks.

A connection between the couplings to leptons and to quarks can be made by requiring that the
relic abundance of a thermally produced WIMP should not be higher than the relic density of dark
matter observed today, which constrains the couplings of the WIMP and the mediator to the various SM
particles from below. Based on this constraint, the interplay between direct and indirect detection as well
as collider searches has been studied in a global likelihood analysis based on an effective field theory
(EFT) ansatz for the example of a singlet-like Majorana fermion WIMP [9]. This example shows that
there are significant regions in parameter space not probed by the LHC that can be covered by future
high-energy lepton colliders. The coverage by a future e+e� collider is based on projections obtained in
a rather old study [10].

In this paper, we re-analyse the mono-photon signature using a full simulation of the ILD detector

2

Jet

?

Jet

J. Gonski, J. Lai, BN, I Ochoa, JHEP (2022)



Preliminary
Gaia DR2

Cold, stellar streams

80Anomaly Detection: Science

This program is really just getting started - there are many 
challenges to scale up (methods and computing*), but the 

early studies are exciting and cross-cutting

We have shown that we 
can find known streams

Will we be able to find new 
streams?  Can weakly 

supervised learning help us 
categorize known streams?

w/M. Buckley, J. Collins, M. Pettee, D. Shih, S. Thanvantri



81Future of Label-Free Learning

Methods

Science

Push the dimensionality, relax the 
assumptions (non-resonant, …)

2000 2500 3000 3500 4000

mJJ / GeV

10�1

100

101

102

103

104

105

106

E
ve

nt
s

/
10

0
G

eV

Signal
region

SidebandSideband

2500 3000 3500
10�13

10�11

10�9

10�7

10�5

10�3

10�1

p 0

3�

4�

5�

6�

7�

3�

4�

5�

6�

7�

mJJ / GeV

No signal

2500 3000 3500

10%

1%

0.2%

With signal

Figure 8. Left: mJJ distribution of dijet events (including injected signal, indicated by the filled
histogram) before and after applying jet substructure cuts using the NN classifier output for the
mJJ ' 3 TeV mass hypothesis. The dashed red lines indicate the fit to the data points outside of the
signal region, with the gray bands representing the fit uncertainties. The top dataset is the raw dijet
distribution with no cut applied, while the subsequent datasets have cuts applied at thresholds with
e�ciency of 10�1, 10�2, 2 ⇥ 10�3, and 2 ⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance
signal has been injected (right). The dashed lines correspond to the case where no substructure cut
is applied, and the various solid lines correspond to cuts on the classifier output with e�ciencies of
10�1, 10�2, and 2 ⇥ 10�3.

Figure 9. Events projected onto the 2D plane of the two jet masses. The classifiers are trained to
discriminate events in the signal region (left plot) from those in the sideband (second plot). The third
plot shows in red the 0.2% most signal-like events determined by the classifier trained in this way. The
rightmost plot shows in red the truth-level signal events.

signal region from those of the sideband, the 0.2% most signal-like events as determined by

the classifier are plotted in red in the third plot of Fig. 9, overlaid on top of the remaining

events in gray. The classifier has selected a population of events with mJ A ' 400 GeV and
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Figure 8. Left: mJJ distribution of dijet events (including injected signal, indicated by the filled
histogram) before and after applying jet substructure cuts using the NN classifier output for the
mJJ ' 3 TeV mass hypothesis. The dashed red lines indicate the fit to the data points outside of the
signal region, with the gray bands representing the fit uncertainties. The top dataset is the raw dijet
distribution with no cut applied, while the subsequent datasets have cuts applied at thresholds with
e�ciency of 10�1, 10�2, 2 ⇥ 10�3, and 2 ⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance
signal has been injected (right). The dashed lines correspond to the case where no substructure cut
is applied, and the various solid lines correspond to cuts on the classifier output with e�ciencies of
10�1, 10�2, and 2 ⇥ 10�3.

Figure 9. Events projected onto the 2D plane of the two jet masses. The classifiers are trained to
discriminate events in the signal region (left plot) from those in the sideband (second plot). The third
plot shows in red the 0.2% most signal-like events determined by the classifier trained in this way. The
rightmost plot shows in red the truth-level signal events.

signal region from those of the sideband, the 0.2% most signal-like events as determined by

the classifier are plotted in red in the third plot of Fig. 9, overlaid on top of the remaining

events in gray. The classifier has selected a population of events with mJ A ' 400 GeV and
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Figure 8. Left: mJJ distribution of dijet events (including injected signal, indicated by the filled
histogram) before and after applying jet substructure cuts using the NN classifier output for the
mJJ ' 3 TeV mass hypothesis. The dashed red lines indicate the fit to the data points outside of the
signal region, with the gray bands representing the fit uncertainties. The top dataset is the raw dijet
distribution with no cut applied, while the subsequent datasets have cuts applied at thresholds with
e�ciency of 10�1, 10�2, 2 ⇥ 10�3, and 2 ⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance
signal has been injected (right). The dashed lines correspond to the case where no substructure cut
is applied, and the various solid lines correspond to cuts on the classifier output with e�ciencies of
10�1, 10�2, and 2 ⇥ 10�3.

Figure 9. Events projected onto the 2D plane of the two jet masses. The classifiers are trained to
discriminate events in the signal region (left plot) from those in the sideband (second plot). The third
plot shows in red the 0.2% most signal-like events determined by the classifier trained in this way. The
rightmost plot shows in red the truth-level signal events.

signal region from those of the sideband, the 0.2% most signal-like events as determined by

the classifier are plotted in red in the third plot of Fig. 9, overlaid on top of the remaining

events in gray. The classifier has selected a population of events with mJ A ' 400 GeV and
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82Outline for today

Forward Models
(fast simulation)

Inverse Models
(unfolding)

Simulation-free
(anomaly detection)

I’ll focus on three core, cross-cutting areas of ML ⋂ Physics

To illustrate these exciting topics, I’ll give one vignette per area
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We need innovative computational techniques to 
make the data-driven discoveries of the future.
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We need physicists 
(theory + experiment) to 

address unique challenges

This is not just about 
improving precision, it is 

about enabling new science!
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86Calo(GAN,VAE,Flow,Score)
7

FIG. 3. Comparison of the sum of all voxel energies (top) and number of hits (bottom) for datasets 1 (left), 2 (middle), and 3
(right). Dashed red bands represent the 10% deviation interval of the generated samples when compared to Geant predictions

as:

�i =
q

hx2
i i � hxii

2, (15)

with energy-weighted mean defined as

hxii =

P
j xi,jEjP

j Ej
. (16)

A good agreement between all CaloScore implemen-
tations and Geant predictions is observed in dataset 2,
with all implementations showing less than 10% devia-
tion in all calorimeter layers. However, for dataset 3, the
VP implementations shows a disagreement at the last
layers of the detector while the shift observed in Fig. 4
for the VE implementation leads to a similar shift in
the shower width. Nevertheless, the subVP implemen-
tation maintains the same level of agreement as observed
in dataset 2.

A qualitative assessment of the generation is shown
in Fig. 7 for datasets 2 and 3. The 2-dimensional dis-
tribution of the average energy deposition is shown in
the detector layers with highest (layer 10) and lowest
(layer 44) mean energy depositions. Empty entries in the
Geant simulation are a result of the initial voxelization
combined with the following transformation to Cartesian
coordinates. All voxels with an expected energy deposi-

tion above 0 are populated in all CaloScore implemen-
tations, an indication that CaloScore is able to repro-
duce the shower diversity from the training set. Images at
layer 10 are identical for all di↵usion models, dominated
by the central voxel. Layer 44; however, has more vox-
els sharing a significant fraction of the layer energy. The
subVP implementation shows a visually similar average
to Geant compared to the other di↵usion implementa-
tions, capturing the high energy depositions along the
y-axis in dataset 2 and the isotropic pattern around the
center in dataset 3.
Finally, the assessment of generated samples using dif-

ferent conditional energies is investigated in Fig. 8, by
comparing the total deposited energy versus the gener-
ated particle energy.
All CaloScore models show similar mean and spread

compared to Geant, with the exception of the VE im-
plementation that shows a wider spread for dataset 2 and
higher mean in dataset 3.
We have also explored the classifier metric introduced

in CalowFlow whereby a post-hoc classifier is trained
to distinguish generated showers from Geant 4 exam-
ples. While the classifier could not exactly identify fake
from real showers, it did have an area under the receiver
operating characteristic curve (AUC) of about 0.98 for all
three models. While this suggests that further (hyper-
parameter)optimization would be beneficial, it already

V. Mikuni and BN, 2206.11898

4

Depth-weighted total energy ld

FIG. 3. Comparison of shower shape variables and other variables of interest, such as the sparsity level per layer, for the
Geant4 and CaloGAN datasets for e+, � and ⇡+. See [PRD companion paper] for detailed definitions.

fier tested on CaloGAN samples. The stability of the
accuracy metric implies that the CaloGAN succeeds at
representing at least as much variation among showers
initiated by di↵erent particles as it is necessary to clas-
sify them using the same features in Geant4. Training
on CaloGAN and testing on Geant4 does show signif-
icant degradation, indicating that the GAN is inventing
new class-dependent features or underrepresenting class-

independent features. While percent-level variations may
be important for some applications, using classification
as a generator diagnostic is an important tool for expos-
ing the modeling of interclass shower variations.

Figure 5. Deposited energy
per layer in z-direction for
showers which are decoded
with all latent variables
zi = 0, except the highest
KLD latent z0 variable
which is set to values
between -3 and 3.

Specifically, we can increase generation fidelity by either regularizing the latent space more
strongly or by leveraging and sampling from the information rich non-Gaussian distributions.
Either optimization path can be approached in di↵erent ways. We have chosen one exem-
plary method for each: (1) By increasing �KLD the overall KLD in the latent space is reduced,
yielding latent distributions stronger regularized towards Standard Normal distributions and
therefore more accurate generative sampling from such a N(0, 1) distribution; or (2) keeping
the already trained model but using a second density estimator — such as Kernel Density
Estimation (KDE) [25] — on the latent variables and sampling directly from the encoded
latent space. The former approach is motivated by [26] while the latter mirrors a method for
the Bu↵er-VAE from Ref. [27].

Figure 6. Di↵erential distributions comparing physics quantities between Geant4 and BIB-AE models
with �KLD = 0.05, �KLD = 0.4 and �KLD = 0.05 with the KDE sampling approach.

7

E. Buhmann et al., 
2102.12491

Score/
Diffusion

GAN VAE

Figure 8. Distributions that are sensitive to Flow II for ⇡+. Top row: energy of brightest voxel
compared to the layer energy; second row: energy of second brightest voxel compared to the layer
energy; third row: di↵erence of brightest and second brightest voxel, normalized to their sum; last
row: sparsity of the showers. See [17] for detailed definitions.
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C, Kraus and D. Shih, 
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Normalizing 
Flow

Multiple 
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GANs



87Introduction: generative models

A generator is nothing other than a function 
that maps random numbers to structure.

Deep generative models: the map is a deep neural network.
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GANs
Generative 

Adversarial Networks

NFs
Normalizing Flows

VAEs
Variational Autoencoders

Deep generative models: the map is a deep neural network.

Score-
based



89Introduction: GANs
Generative Adversarial Networks (GANs):  
A two-network game where one maps noise to structure 
and one classifies images as fake or real.

{real,fake}

G
D

D

noise

When D is maximally 
confused, G will be 
a good generator Physics-based 

simulator or data
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Variational Autoencoders (VAEs):  
A pair of networks that embed the data into a latent space 
with a given prior and decode back to the data space.

Introduction: VAEs

Physics-based 
simulator or data

DE

latent space

p(z|x) p(x|z)

Probabilistic 
encoder

Probabilistic 
decoder



91Introduction: NFs
Normalizing Flows (NFs):  
A series of invertible transformations mapping a known 
density into the data density.

F

latent 
space

F F F

Invertible transformations 
with tractable Jacobians

Optimize via 
maximum likelihood

p(x) = p(z) |dF-1/dx|p(z) p(x)



92Introduction: Score-based
Score-based 
Learn the gradient of the density instead of the probability 
density itself. 3

t=1t=0 t=0.75t=0.25

Forward diffusion (training)

Reverse-time diffusion (data generation)

FIG. 1. The score-based generative model is trained using a di↵usion process that slowly perturbs the data. Generation of new
samples is carried out by reversing the di↵usion process using the learned score-function, or the gradient of the data density.
For di↵erent time-steps, we show the distribution of deposited energies versus generated particle energies (top) and the energy
deposition in a single layer of a calorimeter (bottom), generated with our proposed CaloScore model.

minimized during training is:

1

2
Ep�(x̃|x)pdata

h
ks✓(x̃)�rx̃ log p�(x̃|x)k

2
2

i
. (4)

The advantage of this strategy is that we can directly
estimate the last term in Eq. 4, since:

rx̃ log p�(x̃|x) =
x� x̃

�2
⇠

N (0, 1)

�
(5)

The time component can be made explicit by rewriting
the loss function in Eq. 4 as:

1

2
EtEp(xt|x0)p(x0)

h
�(t) ks✓(x, t)�rxt log pt(xt|x0)k

2
2

i
.

(6)
The weighting function �(t) : R ! R ensures

the loss function has the same order of magnitude at
all times and is chosen to be inversely proportional

to E
h
krxt log pt(xt|x0)k

2
2

i
. When the drift coe�cient

f(x, t) is chosen to be an a�ne function of x, the result-
ing perturbation kernel is always Gaussian [58] and can
be chosen such that both mean and variance are known
in closed form, making Eq. 6 e�cient to compute during
training.

III. CHOICE OF DRIFT AND DIFFUSION
COEFFICIENTS

In this work we investigate three di↵erent choices of
drift and di↵usion coe�cients that result in perturbation
kernels that are easy to calculate in closed form. The
first SDE, initially proposed in [53], is defined as:

dx =

r
d[�2(t)]

dt
dw. (7)

The parameter �(t) = �min

⇣
�max
�min

⌘t
is defined with

�min = 0.01 and �max = 50 to ensure x(1) ⇠ N (0,�2
max)

is independent from x(0). Since the time-dependent vari-
ance of the resulting perturbation explodes when t ! 1,
this SDE is often referred to variance exploding (VE)
SDE.
The second SDE is a continuous version of the discrete

perturbation introduced in [54], defined as:

dx = �
1

2
�(t)xdt+

p
�(t)dw. (8)

The parameter �(t) = �min + t (�max � �min) with
�min = 0.1 and �max = 20 is used, resulting in x(1) ⇠

N (0, 1). The variance of this process is fixed to one when

From 2206.11898



93Integration into real detector sim.
ATLAS Collaboration, 2109.02551

FastCalo
Sim V2Geant4

FastCaloSimv2
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Muon 
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Geant4

Ekin < (8−16) GeV Ekin > (256 − 512) GeV(8−16) GeV < Ekin

Geant4
Ekin < 200 MeV

Ekin < 400 MeV
Other hadrons:

pions:

< (256 − 512) GeV

The ATLAS Collaboration fast simulation (AF3) now 
includes a GAN at intermediate energies for pions
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The new fast simulation (AF3) significantly improves jet 
substructure with respect to the older one (AF2).
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X ∼ 𝒩(μ, σ)
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X ∼ 𝒩(μ, σ)

x = np.random.normal(mu,sigma) 
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X ∼ 𝒩(μ, σ)

x = np.random.normal(mu,sigma) 

Z = np.random.uniform(0,1) 

x = sigma*Phiinv(z)+mu 

(Phiinv = inverse Gaussian CDF)

Removed 
randomness from 

simulator
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X ∼ 𝒩(μ, σ)

x = np.random.normal(mu,sigma) 

Z = np.random.uniform(0,1) 

x = sigma*Phiinv(z)+mu 

(Phiinv = inverse Gaussian CDF)

Now, can compute 
 and ∂/∂μ ∂/∂σ

Removed 
randomness from 

simulator
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X ∼ 𝒩(μ, σ)

x = np.random.normal(mu,sigma) 

Z = np.random.uniform(0,1) 

x = sigma*Phiinv(z)+mu 

(Phiinv = inverse Gaussian CDF)

Now, can compute 
 and ∂/∂μ ∂/∂σ

We can then do: 
sim(μ0 + ϵ) ≈ sim(μ0) + ∂sim

∂μ ϵ

Removed 
randomness from 

simulator
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X ∼ 𝒩(μ, σ)

x = np.random.normal(mu,sigma) 

Z = np.random.uniform(0,1) 

x = sigma*Phiinv(z)+mu 

(Phiinv = inverse Gaussian CDF)

Now, can compute 
 and ∂/∂μ ∂/∂σ

We can then do: 
sim(μ0 + ϵ) ≈ sim(μ0) + ∂sim

∂μ ϵ

2208.02274



102Why event moving?

Most of the workhorse HEP simulations are written in C++, with a small number of codes written
in fortran or python. As a Markov Chain, each step of Fig. 2 can be run independently given the
the previous simulator output. Many of these codes are routinely run on HPC resources [12–14].
Generating a synthetic dataset in the event model is embarrassingly parallel across events.

Combining Simulations with Data Synthetic datasets, each consisting of many events or one
universe, are compared with data to determine the parameters of interest (✓).

� = �1

� = �?

� = �2

� = �3

Experimental 
Data

Dimensionality 
reduction

Figure 3: An illustration of how
simulations are combined with
data to perform inference.

Currently, this proceeds in three steps as illustrated in Fig. 3.
First, a set of synthetic datasets are generated with various
values of ✓. Then, the experimental and synthetic data are
passed through a dimension reduction step. Even though the
data can be very high dimensional, typically each dataset is
reduced to a one-dimensional representation (e.g., a histogram
in HEP or a power spectrum in cosmology). The same dimen-
sion reduction is applied to data and simulation. Finally, the
reduced representations of data and simulation are compared.
The ✓ corresponding to the synthetic dataset that is the best
match to data is declared the fitted value. Depending on the
definition of ‘best match’, synthetic datasets from nearby pa-
rameter values are then used to estimate uncertainties.

For example, the most precise measurement of the top
quark mass from ATLAS (✓ = mtop) uses five synthetic
datasets and a maximum likelihood metric for the ‘best match’
using a product of three one-dimensional histograms (with
Poisson likelihoods for data counts) [15]. Simulating a single
event takes a few minutes for top quarks [16], which severely
limits the number of synthetic datasets that can be generated4.
The dimensionality of the inference is limited to one dimension
because of the need to interpolate precisely between simula-
tions produced with the coarsely spaced ✓ values.

Another example is the extraction of neutrino masses and parameters related to dark energy
from cosmological observables. The standard approach is to use simulations of the power spectrum
(the Fourier transform of the 2-point correlation function). Currently, the most powerful experiment
to investigate neutrinos and dark energy from cosmology, the ongoing DESI survey [11], requires
many hundreds of simulations for the computation of the covariance matrix alone, required in the
traditional analysis where the theory is computed analytically. For an optimal analysis, where the
theoretical models are derived from accurate simulations, and in which parameters are estimated
through classical Markov Chain Monte Carlo (MCMC) methods (without gradients), millions of
simulations would be required. Each of these simulations, which needs to cover a volume larger
than that spanned by the survey, takes several tens of hours of compute time on a cluster for
each set of cosmological parameters [17]. As in the collider physics case, dimensionality reduction
is required due to the expense of the simulation and the need to interpolate simulations between
parameter values.

4A synthetic dataset would typically include hundreds of millions events

4

Often, we generate many 
simulations with different 

parameters (templates) and 
fit them to data.

We also often have to 
use histograms in order 

to interpolate.

With event moving, we can 
interpolate in many 

dimensions and eliminate 
MC stat. uncertainties!



103A brief word on Autodiff

1.3 Potential of Di↵erentiable Simulators

Di↵erentiability A simulation is di↵erentiable if it is e�cient to compute the derivative with
respect to the input parameters. In the harmonic oscillator example above, this means that one
can compute @x/@!, @x/@µ, @x/@�, and @x/@z. In the event model, there would be many xi and
di↵erentiability would mean that one can compute derivatives of xi with respect to the parameters of
interest and the nuisance parameters zi. In principle, finite di↵erence methods are always available
for computing gradients. However, this approach does not scale well to many dimensions. When we
refer to di↵erentiability, we are specifically referring to automatic di↵erentiation (autodi↵) whereby
gradients are tracked through the simulation function and can readily achieve machine precision.
An e↵ective autodi↵ approach will balance speed with memory e�ciency.

Simulation 
Outputs, xj

Simulation 
Inputs

Intermediate 
values & 

computations

(Parameters of 
interest & nuisance 

parameters)

z0 zN

f(z0, . . . , zN)
z̃ =

z̃ �xj

�z̃

�xj

�z0

�xj

�zN

Forward pass
Backward pass

�xj

�zi
= �xj

�z̃
�z̃
�zi

Figure 4: An illustration of the back propa-
gation algorithm for computing gradients.

There are a variety of approaches to autodi↵
that vary in how they keep track of the gradients
through the simulation program. One common tool
is back propagation, which is the autodi↵ tool most
well-known from computing gradients of neural net-
works. Back propagation caches the function value
and derivative of each substep of the function ex-
ecution as illustrated in Fig. 4. In particular, the
simulation function is decomposed into elementary
operations with multiple intermediate steps. A for-
ward pass through the function stores all interme-
diate values. Then, a backwards pass through the
function computes gradients based on the function
values and the chain rule. A common feature of au-
todi↵ methods is that they require little computa-
tional overhead. However, some methods (like back

propagation) have a significant memory footprint from storing intermediate values during the com-
putations.

There are a variety of standard C++ and Python tools for performing autodi↵. The Python

tools are particularly widespread because they are naturally compatible with deep learning and
running on GPUs. These tools include TensorFlow, JAX, and PyTorch. The newest of these, JAX,
is particularly popular because it provides an interface that is a drop-in replacement for numpy [18]
functions and thus requires the least new syntax.

Optimal Inference In the current analysis paradigm, low-dimensional summary statistics are
used because of the need to morph simulations corresponding to nearby parameter values. With
di↵erentiable simulations, one can morph a simulation with parameter ✓ into one with parameter
✓ + �✓. This morphing benefits from having all the same nuisance parameters, which reduces the
simulation statistical uncertainty that often reduces analysis precision.

Suppose that L is a function that compares a synthetic dataset (many events or one universe)
to experimental data. In the current paradigm, L projects the data into a low-dimensional sum-
mary statistic and then compares these quantities (e.g., with a �2 metric). With a di↵erentiable
simulation, L is not restricted to such low-dimensional statistics. For example, L could be the
log likelihood, comparing directly the simulation, which depends on a high dimensional set of pa-
rameters (both nuisance parameters z and parameters of interest ✓), to the high dimensional data
(feature space). In this context it is useful to have a di↵erentiable simulation with respect to all of
its parameters. As another example, L could be a neural network trained to distinguish synthetic

5



104Towards a differential parton shower

3

A

B

1/2 0/3 3/4 1/3 0/2 0/2 0/3 1/20/3

Figure 2: The Discrete QCD parton shower algorithm can be re-interpreted as a one-
dimensional random walk, since 3 the baseline of the folded structure carries all necessary
information. The “grove-like” baseline structure can A be generated by a heavily con-
strained two-dimensional random walk. Due to the low fractal dimension of the grove
structure, a one-dimensional random-walk algorithm B is equally viable. For B , the no-
tation n/nmax indicates that option n was picked out of nmax choices. The two-particle
invariants (ln(sij)) can be read o↵ by following the path from particle i to particle j, and
skipping segments whose colour was created and reabsorbed along the way (e.g. skipping
the pink segments when calculating the invariant mass of the green and blue gluon tips).

showers, which rely on sampling the no-emission probability � with the “veto algorithm”.

Once an e↵ective gluon has been selected, new triangles are folded out of the parent

region. E↵ective gluon positions in this fold are again quantised into tiles of dimensions

�yg ⇥2�yg, as illustrated by the upper left part of Fig. 2. However, a simpler interpretation

is possible since the height and the y�range of each fold are redundant: All information

necessary to calculate momentum invariants sij can be read o↵ the baseline of the folded

triangle structure, shown in the lower left part of Fig. 2. We will call a specific baseline

structure a “grove”. The shortest distance (along the baseline) between two “tips” i and

j can be shown to equal ln(sij/⇤2). Together with the knowledge of the overall centre-of-

mass energy and uniformly sampled azimuthal decay angles �, this information is su�cient

to construct post-decay kinematics.

The Discrete QCD algorithm allows a simple method to produce groves with correct

rates. However, there are many ways to create the grove structures apart from the Discrete

QCD algorithm. One example is shown in the lower right part of Fig. 2. Since the grove

structure is contained in a triangular region smaller than the original background triangle,

– 6 –

Images from 2207.10694; algorithm from Nuclear Physics B 463 (1996) 217 

Full parton shower is a bit tricky since 
variable (unbounded) number of random 
numbers.  Let’s start with “Discrete QCD” 

where the number is fixed.

1 2

`

`/2 = n �yg

| {z }

�yg

 = ln(k2
?
/⇤2)

y

L

L/2�L/2

Figure 1: The phase space of e↵ective gluon emission is discrete, since 1 gluons within a
rapidity region �yg act coherently due to running-coupling e↵ects. The  (or equivalently
the k

2
?) dimension is also quantised, since 2 additional phase space folds opening due to

gluon emission are quantised in units of �yg. See main text for more details.

choice of an evolution variable t, and c) the choice of a momentum mapping sij , sjk $ t, ⇠

which determines the relations between pre-and post-decay momenta.

It is worth noting that all conventional state-of-the-art parton showers use slight vari-

ations of a single algorithm – the “veto algorithm” – to solve Eq. 2.2 numerically. This

algorithm treats the variables t and ⇠ as continuous degrees of freedom. It is thus unsuit-

able for (current) quantum devices. The following section will develop other algorithmic

solutions of Eq. 2.2, guided by keeping in mind the feasibility of NISQ devices.

2.1 Reinterpreting classical parton shower algorithms as random walks

This section extends the classical shower algorithm toolbox by performing several abstrac-

tions of the features of dipole showers. We are led to conclude that the showering process

can be described by creating and sampling from a fixed set of primitive fractal structures,

followed by a translation of the chosen primitive structure into scattering event momenta.

The first step has an elegant implementation on intermediate-scale quantum devices.

The first abstraction to consider is removing the independent treatment of decay prob-

ability and momentum-space integration by absorbing the non-uniform probability density

in Eq. 2.1 into the integration measure. This can be obtained by choosing a phase-space

parametrisation in terms of the gluon’s transverse momentum,

k
2
? =

sijsjk

sIK
and rapidity y =

1

2
ln

✓
sij

sjk

◆
, (2.4)

which leads to

dP (q(pI)q̄(pK) ! q(pi)g(pj)q̄(pk)) '=
C↵s

⇡
ddy with  = ln

�
k

2
?/⇤2)

�
, (2.5)

where ⇤2 is an arbitrary mass scale. Within this phase space parametrisation, allowed

dipole decays are constrained to a triangular region of height L = ln(sIK/⇤2) in the (y, )-

plane, as illustrated by the left-hand panel of Fig. 1. Due to the colour charge of an emitted

– 4 –
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As a first test, we show 
how this can be used 
to extract the strong 
coupling constant.

All of these samples 
have the same 

random numbers!


