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Questions in fundamental physics

Theoretical guestions motivate a deep
exploration of the fundamental structure of nature



Questions in fundamental physics

Theoretical guestions motivate a deep
exploration of the fundamental structure of nature

Why Is the Higgs
boson so light”?
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Questions in fundamental physics

Theoretical guestions motivate a deep
exploration of the fundamental structure of nature

Why Is the Higgs Why do neutrons have
boson so light? no dipole moment?
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>99% of pictures
on the internet

Reality



Questions in fundamental physics

experimental guestions motivate a deep
exploration of the fundamental structure of nature

What Is the extra
gravitational matter?
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Questions in fundamental physics

experimental guestions motivate a deep
exploration of the fundamental structure of nature

What is the extra Why do neutrinos
gravitational matter? have a mass”?
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Addressing the questions

Dark matter/energy
with Vera Rubin,
CMB-34, ...

Fermilab, KEK neutrino
experiments, ...

Large Hadron Collider

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter
N \ |

Toroid Magnets  Solenoid Magnet  SCT Tracker Pixel Detector TRT Tracker

Heavy Photon Search, ...

Tungsten gy <

Target - &

Linear Shift
Motion System

pair %poctronwtcx

Silicon Vertex
Tracker

Dark Matter with
LZ, XENON, ...

Instrumentation conduits

&—— Water tank

Gadolinium-loaded
liquid scintillator veto

High voltage
feedthrough

Liquid xenon
heat exchanger

120 veto PMTs

7 tonne liquid xenon

time-projection chamber 488 photomultiplier tubes (PMTs)

Additional 180 xenon “skin” PMTs

EM Calorimeter

+ others !

Vacuum
Chamber

Image sources: LSST Corporation, CERN courier (CERN-201710-248-3), Berkeley Lab, CERN, HPS Collaboration



Addressing the questions

N-body simulations Advanced accelerators Supercomputers

Material interactions
with Geant4

Theory Calculations

~ [an + others !

Image sources: Dark Sky Simulations collaboration, SLAC, NERSC, Fermilab Today / Geant4, Peskin and Schroeder



A hyper challenge

Key challenge and opportunity: hvpervariate phase space
& hyper spectral data



A hyper challenge

Key challenge and opportunity:
& hyper spectral data

Image inspired by JHEP 02 (2009) 007

Not to scale!




A hyper challenge

Key challenge and opportunity:
& hyper spectral data

We detect these
particles with
O(100 M)
readout channels




Hypervariate vision with deep learning [e

We have been conductin g Everyone is aware that there must
» : : . : be new physics, but maybe we
multivariate” analysis of need hypervariate vision to see it?

collision events for many years

However, recent advances
have opened up a new way
of looking at our data. This
hypervariate vision will lead
to a deeper understanding
of nature and perhaps
surprises along the way...




Hypervariate vision with deep learning le

We need innovative computational technigues to
make the data-driven discoveries of the future.

This is not just about improving precision,
it is about enabling new science!

©Elephant Listening Project



Data analysis in fundamental physics

Theory of everything Nature
v v
Experiment
v v
Detector-level observables  Detector-level observables
v v

Pattern recognition «—— Pattern recognition



Data analysis in fundamental physics

Theory of everything Nature
v v
Experiment
v v
Detector-level observables  Detector-level observables
' Vo)

Pattern recognition «—— Pattern recognition

This is where most machine learning is being applied.



Data analysis in fundamental physics

Analysis
Observables Nature
Calibration v
Pattern Experiment
recognition ¥
Noise Detector-level observables
mitigation v )

Readout Pattern recognition

| won’t discuss this area at all for the remainder of the talk



Data analysis in fundamental physics

Lorentz Covariant Algorithmic

Networks fairness

(“decorrelation”)
S. Qiu, S. Han, X. Ju, BN, H. Wang

2203.05687
03.0568 O. Kitouni, BN, C. Weisser, M. Williams

JHEP 04 (2021) 70, 2010.09745

Uncertainty-aware

learning Symmetry
Discovery

A. Ghosh, BN, D. Whiteson

PRD 104 (2021) 056025, 2105.08742
K. Desai, BN, J. Thaler

PRD (2022), 2112.05722

...many exciting topics I'd be happy to discuss later!
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Data analysis in fundamental physics

Theory of everything f’\ f‘\ Nature
( v O00O0 '
Experiment
v v
Detector-level observables  Detector-level observables
v v

Pattern recognition «—— Pattern recognition

A growing toolkit called “generative models” are being
developed to accelerate or augment simulations.



Data analysis in fundamental physics

Theory of everything f\ f\ Nature
v ) OO
| v
Physics simulators Experiment
v v
Detector-level observables Detector-level observables
v v

Pattern recognition «—— Pattern recognition

This is the “inverse” direction, where we use simulations
to infer properties of the fundamental theory.



Data analysis in fundamental physics

Theory of everything M Nature

Physics simulators Experiment
v v
Detector-level observables Detector-level observables
v v

Pattern recognition <«———Pattern recognition

There is a growing need for simulation-independent
methods that allow us to look for unanticipated scenarios.
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I'll focus on three core, cross-cutting areas of ML 1 Physics

Forward Models Inverse Models Simulation-free
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I'll focus on three core, cross-cutting areas of ML 1 Physics

Forward Models Inverse Models Simulation-free
(fast simulation) (unfolding) (anomaly detection)

To illustrate these exciting topics, I'll give one vignette per area
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N

I'll focus on three core, cross-cutting areas of ML N Physics

Forward Models
(fast simulation)

To illustrate these exciting topics, I'll give one vignette per area



Introduction: generative models

A generator is nothing other than a function
that maps random numbers to structure.

E > {3

Deep generative models: the map is a deep neural network.




Introduction: GANS

. Generative Adversarial Networks (GANSs):
A two-network game where one maps noise to structure
5 and one classifies images as fake or real. '

¢ Cell ID
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noise

When D is maximally
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a good generator
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Accelerating Detector Simulations

Calorimeters are often
the slowest to simulate

stopping particles requires simulating
interactions of all energies

01 2 3 456 7 38 91011

¢ Cell ID
e
H O O 00 N O U A W N BEFE O

n Cell ID

Grayscale images:
pixel intensity
= energy deposited

¢

kz
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Solution: CaloGAN

GANs and related deep generative models are
promising tools for fast approximate simulations



Solution: CaloGAN

GANs and related deep generative models are
promising tools for fast approximate simulations

These tools are automated, which enables portability

They are fast, can be readily retrained,
and don't take much disk space



Solution: CaloGAN

GANs and related deep generative models are

promising tools for fast approximate simulations

These tools are automated, which enables portability

We also have full control over the physics:

e R o e
R AR S S R e
=+ Sl il e R R L 5 L

fix fluctuations, sweep shower location

Layer 1

-
<
Energy (MeV)

102
101
10°

10°1

, BN, 1711.08813

ni, L. De Oliveira

M. Pagani



Solution: CaloGAN

M. Paganini, L. De Oliveira, BN, PRL 120 (2018) 042003

o” GEANT =3 e* GAN Plons deposit much less
y GEANT [y GAN energy in the first layers;
mT GEANT nTGAN | leave the calorimeter with
signiticant energy

=
-
=

Normalized to unity
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Energy in first layer (GeV)



Solution: CaloGAN

M. Paganini, L. De Oliveira, BN, PRL 120 (2018) 042003

- | e+ GEANT [—J e* GAN Pions dgposit much less
‘= 101 y GEANT [y GAN energy in the first layers;
> | T GEANT TTGAN | leave the calorimeter with
o 10% significant energy
O I et
O 1071
A | M—h - Time to generate an event
& 107 is orders of magnitude
S -3 faster than Geant4 and
= 10 iIndependent of energy
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Solution: CaloGAN

M. Paganini, L. De Oliveira, BN, PRL 120 (2018) 042003

- | e+ GEANT [—J e* GAN Pions deposit much less
‘= 101 y GEANT [y GAN energy in the first layers;
> | T GEANT TTGAN | eave the calorimeter with
o 10% significant energy
8 101 ]‘"‘LHJ"-
A | : Time to generate an event
g 1072, is orders of magnitude
S 10-3. faster than Geant4 and
= iIndependent of energy
10~4
| ATLAS now uses a
107> I CaloGAN-like approach
o-2  10-1 190 1ot — andwilluse itto generate

billions of showers!
Energy in first layer (GeV)

ATLAS, 2109.02551



Future of Deep Generative Models

Goal: maintain speed,
improve precision

A. Ghosh, X. Ju, BN, A. Siodmok, 2203.12660

Methods N 7 R B A R

Next frontier: physics-informed : .L -

generative models I - E

¢” = @ ete data :

Science 2w = == Cluster Hadronization =

. GAN Hadronization .

e Fast simulation for next-gen experiments S B A

» Flexible, “non-parametric” functions for 13 - J( | :

phenomenological models S %@%1 = =+ .

* Hadronization (quarks/gluons — hadrons) = g8 T .

° Dark matter N—bOdy — baryons 8:251 L xOLx L xogx L xogx Ll |x0.4x L 1:%.5
Uniformity (“1-thrust”)
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I'll focus on three core, cross-cutting areas of ML N Physics

Inverse Models
(gi[e]lellgle)

To illustrate these exciting topics, I'll give one vignette per area



Deconvolution/Unfolding

Differential cross section measurements are central to
collider physics & are increasingly important in neutrino physics

dN/dx




Deconvolution/Unfolding

Differential cross section measurements are central to
collider physics & are increasingly important in neutrino physics

These allow us to compare data with theory
for a variety of down-stream science goals

dN/dx




Deconvolution/Unfolding

Differential cross section measurements are central to
collider physics & are increasingly important in neutrino physics

These allow us to compare data with theory
for a variety of down-stream science goals

dN/dx

Current approaches use bins
and are limited in the number of
input/output dimensions.



Deconvolution/Unfolding

Differential cross section measurements are central to
collider physics & are increasingly important in neutrino physics

These allow us to compare data with theory
for a variety of down-stream science goals

dN/dx

Current approaches use bins
and are limited in the number of
input/output dimensions.

Can we go unbinned
and high-dimensional?



Deconvolution/Unfolding

Want this Measure this

l.e. remove detector distortions



Deconvolution/Unfolding

If you know p(meas. | true), could do maximum likelihood, i.e.

unfolded = argmax p(measured | true)

Want this |Measure this




Deconvolution/Unfolding

If you know p(meas. | true), could do maximum likelihood, i.e.

unfolded = argmax p(measured | true)
true

Challenge: measured is hyperspectral and true is
hypervariate ... p(meas. | true) is intractable !



Deconvolution/Unfolding

If you know p(meas. | true), could do maximum likelihood, i.e.

unfolded = argmax p(measured | true)
true

Challenge: measured is hyperspectral and true is
hypervariate ... p(meas. | true) is intractable !

However: we have simulators that we can
use to sample from p(meas. | true)

— Likelihood-free inference



Solution: ML-based Unfolding

We have introduced new machine learning methods
capable of unbinned, high-dimensional unfolding.

This will radically change the cross section
measurement programs of collider and neutrino physics.




A brief introduction to OmniFold

Detector-level Particle-level
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A brief introduction to OmniFold

Detector-level Particle-level

Nature

Step 1:

Simulation




A brief introduction to OmniFold

Detector-level Particle-level
7\ B ,‘
% Unbinned, high-
2 dimensional
reweighting performed

with neural networks
Step 1:

Simulation




A brief introduction to OmniFold

Detector-level Particle-level
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A brief introduction to OmniFold

Detector-level Particle-level
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Reweight Sim. to Data Weights Reweight Gen.
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A brief introduction to OmniFold

Detector-level Particle-level
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A brief introduction to OmniFold

Detector-level Particle-level

e e

Step 1: Pull Step 2:
Reweight Sim. to Data Weights Reweight Gen.

Simulation

Push
Weights




A brief introduction to OmniFold

Detector-level Particle-level
|| = % £
V
= ~
= 7
5 /
Z wH R
] ] — B
Step 1: Pull Step 2:
Reweight Sim. to Data Weights Reweight Gen.

Geant4  E——
Push

Weights

Simulation




Normalized Cross Section

Ratio to

ML-based Unfolding: Science

We are already delivering science results with this methodology
(more on the way!); R&D is required to extract the full benefits

ask Jing Pan /
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ML-based Unfolding: Science

We are already delivering science results with this methodology
(more on the way!); R&D is required to extract the full benefits

. . Data points =
8-dimensional phase machine learning

space for exploring proton
structure & universality
(“factorization”)

ep scattering
104 : H1

Q? > 150 GeV?

e

T

0.2 <y<0.7

P> 10 GeV
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e e

® Data A
0 PvyrHia 8.3 V CAscADE set 2
+
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ML-based Unfolding: Science

A ARTICLE - MYSTERIES OF MATTER By Theresa Duque ‘
‘ October 25, 2022

"How Do You Solve a Problem Like
a Proton? You Smash It to f
Smithereens - Then Build It Back
Together With Machine Learning

w/V. Mikuni



ML-based Unfolding: Science

We are already delivering science results with this methodology
(more on the way!); R&D is required to extract the full benefits

Data points =
machine learning

L, Ere scattering L ong-standing tension
N R -;af'\‘ (~30) between methods
5 \ for measuring the strong
5 1077 3 '

: —F o — coupling constant.

< 1077 1 & e ALEPH E.P.J. C (2004)

;% uy [ ALEPH Raw 1994 Data

é 10—4 — iztr:TIEIaA%—i—GSneant 3 Sim. |I

- IJ“HJTT ol 18U In(1 — T 1 stat Goal: Use ML to shed

0 ! : ++ UniFold In(1 — T") + stat. . . .

L - light on this issue.
3 o

Thrust In(1 — T) w/A. Badea, Y.-J. Lee, J. Thaler



ML-based Unfolding: Science

We are already delivering science results with this methodology
(more on the way!); R&D is required to extract the full benefits

® 'Data (syst. 0)'
'‘Simulation’ (syst. 1)
1 Sim. + Step 1 OmniFold |

o
o
o
[
(92

PRELIMINARY
0.0010¢ T2K Public Simulation ]
NEUT + Geant4

—_

(1/0) do/dpr [1/80 MeV]

0.0005¢

0.0000

0 500 1000 1500 2000
Muon Momentum [MeV/c]

neutrino Data points =
scaftering ~ machine learning

Highly-variable detector
response in 12K detector can be
addressed with ML unfolding.

w/C. Wilkinson and T. Kikawa



The future of likelihood-free Inference

Goal: optimal combination of
simulations & machine learning

Methods
Next frontier: differentiable simulations

—.  Detector
- simulation

Science
 Detector optimization \ Phe"°n':;;;“e<;;°9'°a'
 Cross sections from ATLAS and T2K/LArTPC 1
« Cross sections from legacy data (HERA/LEP/SLD) %< Fgg}cﬂ;;f;g"gs

l\ r\ﬁ

0 Inference




The future of likelihood-free Inference
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I'll focus on three core, cross-cutting areas of ML N Physics

Simulation-free
(anomaly detection)

To illustrate these exciting topics, I'll give one vignette per area



Anomaly Detection

Nearly all searches for new particles are signal-model
driven. We have introduced a new model agnostic program.




Anomaly Detection

Nearly all searches for new particles are signal-model
driven. We have introduced a new model agnostic program.

AD in fundamental physics is inherently different than other
areas of science and industry - we need new approaches.

+Simple
combinations of
4-vectors, e.g.
Invariant masses




Anomaly Detection

Nearly all searches for new particles are signal-model
driven. We have introduced a new model agnostic program.




Overview of New ldeas

| like to categorize new ideas based on the core
assumption about the new physics, which Is
intimately related to the technique supervision

Unsupervised = no labels
Weakly-supervised = noisy labels
Semi-supervised = partial labels
Supervised = full label information

This is most searches. You simulate the signal (label
= 1), simulate the background (label = 0) and “train”
a classifier to distinguish the 1°s from the 0's.



Unsupervised

Unsupervised = no labels

Typically, the goal of these methods is to look
for events with low p(background)

o

One strategy (autoencoders) is to try to compress events
and then uncompress them. When x =
uncompress(compress(x)), then x probably has low p(x).

M. Farina, Y. Nakai, D. Shih, 1808.08992: T. Heimel, G. Kasieczka, T. Plehn,
J. Thompson, 1808.08979; ... V. Mikuni, BN, D. Shih, 2111.06417+ many more



Weakly-supervised

Weakly-supervised = noisy labels

Typically, the goal of these methods is to look for events with
high p(possibly signal-enriched)/o(possibly signal-depleted)

Signal enriched Signal depleted

E. Metodiev, BN, J. Thaler, 1708.02949; J. Collins, K. Howe, BN, 1805.02664; + many more



Semi-supervised

Semi-supervised = partial labels

ypically, these methods use some signal
simulations to build signal sensitivity

VS

Image credit: https://www.particlezoo.net

e.g. SM background
Versus many signals




Overview of New ldeas

Approach:  Unsupervised Weak_ly
supervised
BSM Signal is rare g\g?zle'rs]ﬁ&
assumption (low p) (high p ratio)

rare IS not Invariant™
under coordinate need two samples
transformations!

Main
drawback

*for a detailed discussion about this, see G. Kasieczka et al., 2209.06225



Overview of New ldeas

Approach:  Unsupervised Weak_ly
supervised
BSM Signal is rare c?\lxgey?gcijlelis?t?/
assumption (low p) (high p ratio)

rare IS not Invariant™
under coordinate need tw samples
transformations!

Main
drawback

Cannonical example:
resonances!

*for a detailed discussion about this, see G. Kasieczka et al., 2209.06225



Resonant Anomalies

A relatively general, but powerful assumption is that the
anomaly Is localized somewhere In phase space.

0
-
L
e background / noise
[®) /
signal
(anomaly)

AW

Mres

Generically true when there are on-shell new particles
or transient phenomena in time series data



Resonant Anomalies

A relatively general, but powerful assumption is that the
anomaly Is localized somewhere In phase space.

background

/

signal
(anomaly)

AW

First: we will need to
generate noisy labels.

Mres

Generically true when there are on-shell new particles
or transient phenomena in time series data



Resonant Anomalies

(00000 | |

®
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OO | | FCOG®®
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®eeGG | | FCOG®®

dN/dMyres

background

signal /
A

Mres

First: we will need to generate noisy labels.



Resonant Anomalies

J. Collins, K. Howe. BN, ggggg ':5:%
PRL 121 (2018) 241803 00000 | | 000®®
OIOIOICICARKCICICIOlE)

+many more @000 | | 90000

dN/dMyres

background

/

Extended
feature space
for machine Mres
learning

(Shown as 1D, but can be many-dimensional)



Resonant Anomalies
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—— background
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jet substructure



Resonant Anomalies

OeeeG | | ®FCG®O®
OO0 | | @GOG
OO | | FCOG®®
O0O0® | | @GO®O®
®eeGG | | FCOG®®

dN/dMyres

~ LD Simulation

—— background

event properties



Resonant Anomalies

GAIA DR2

dN/dMyres

Image: NASA

Y—— background

proper motion

location, metallicity, ...



Anomaly Detection: Science

This program is really just getting started - there are many
challenges to scale up (methods and computing®), but the
early studies are exciting and cross-cutting

o

Stellar Positions

All Labeled GD1 in Test Set
Labeled GD1 (Top 100)
Promising Unlabeled Stars

Mo [GeV]

400; s =13 TeV, 139 fb-1
[~ X Injected Signal
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*LHC result shown above required training 20k NNs!



Anomaly Detection: Science

This program is really just getting started - there are many
challenges to scale up (methods and computing®), but the
early studies are exciting and cross-cutting
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Anomaly Detection: Science

This program is really just getting started - there are many
challenges to scale up (methods and computing®), but the
early studies are exciting and cross-cutting
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May have
important
implications for
the design of
future colliders



Anomaly Detection: Science

This program is really just getting started - there are many
challenges to scale up (methods and computing®), but the
early studies are exciting and cross-cutting

Stellar Positions

All Labeled GD1 in Test Set We have S hOWﬂ that we

e Labeled GD1 (Top 100)

+ Promising Unlabeled Stars can find known streams
s 58 ...&c.- '3
‘ Will we be able to find new
Gaia DR2 streams”? Can weakly
Preliminary supervised learning help us
categorize known streams?

Cold, stellar streams

w/M. Buckley, J. Collins, M. Pettee, D. Shih, S. Thanvantri



Future of Label-Free Learning

Goal: develop, deploy, and
interpret anomaly detection

J. Collins, K. Howe, BN,
PRL 121 (2018) 241803

Methods

LHC Simulation

Push the dimensionality, relax the
assumptions (non-resonant, ...)

<
Science
10—9 _____________ I
* Anomalies @ colliders i narsher NN
» Anomalies @ astroparticle/cosmology 1Y B «hreshold 7
* Anomalies @ dark matter direct det. ol 02%

2500 3000 3000
g / GeV



Outline for today &

I'll focus on three core, cross-cutting areas of ML 1 Physics

Forward Models Inverse Models Simulation-free
(fast simulation) (unfolding) (anomaly detection)

To illustrate these exciting topics, I'll give one vignette per area



Conclusions and Outlook

We need innovative computational techniques to
make the data-driven discoveries of the future.

This is not just about
iImproving precision, it is
about enabling new science!

We need physicists
(theory + experiment) to
address unigue challenges
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Calo(GAN,VAE, Flow,Score
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Introduction: generative models

A generator is nothing other than a function
that maps random numbers to structure.

E > {3

Deep generative models: the map is a deep neural network.




GANs Score-

(Generative

Adversarial Networks based

=

NFs VAES

Normalizing Flows Variational Autoencoders

Deep generative models: the map is a deep neural network.




Introduction: GANS

. Generative Adversarial Networks (GANSs):
A two-network game where one maps noise to structure
5 and one classifies images as fake or real. '

¢ Cell ID
H O O 00O N O UL D W IN R O

noise

When D is maximally
confused, G will be
a good generator
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- Physics-based
simulator or data
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Introduction: VAES

. Variational Autoencoders (VAES): ,
. A pair of networks that embed the data into a latent space
. With a given prior and decode back to the data space. '

_ latent space
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p(z|x) p(x|z) =
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Sldatoror data encoder decoder




Introduction: NFs

. Normalizing Flows (NFs):
. A series of invertible transformations mapping a known
. density into the data density.

Optimize via
maximum likelihood

| ; 103%
55. . i
| rmation

iatent Invertible transformations

with tractable Jacobians

space
p(x) = p(z) |dF-1/dx]



Introduction: Score-based

. Score-based
. Learn the gradient of the density instead of the probability :
. density itself. 5

Forward diffusion (training)

—
t=0 t=0.25 t=0.75 t=1

= 103FT T TTTT T T T — T T T T T — T T T T —
3 F CaloS bVP 7 3 104? e CaloScore: subVP E > 107} e CaloScore: subVP — >
o, Geantd / ] S Geant4 <) o,
> - i > I > >
o w = 1 03 - | = =
© 1021 /’ - (9] F E (9] 5 [
< 4 E S f S 105 E =
(] oS [0} o o o
g o a F g g
[ , > [0 102 - - [ [
[a) oo (f [m) 3 E [a) a
10k . ’f/'-g' - r 108} 1 108} n
- o8 '.'""-: °
r T aloit o 10T —
i of f*~ '}" E
| SR 10} s 1011 s
10° ,;:v E 100
i '\"‘. ! ! | ] b ! ! | ! ! ! ! ! ! ! !
100 107 102 103 100 10! 102 108 100 107 102 108 100 107 102 103
Gen. energy [GeV] Gen. energy [GeV] Gen. energy [GeV] Gen. energy [GeV]
aloScore: subVP, layer number 44 x1074 CaloScore: subVP, layer number 44 x1072 CaloScore: subVP, layer number 10 x1 02
5 30f 5 30f 0 ‘iﬁllT“a.la_i‘ T >’
b . = f i m )
o5k 4.00 o5l 1.80 1.20 o5k S,
r r F 1.50 -,
I [ I o
20 201 I [}
E 3.00 g 20f c
i i 1.60 1.10 r 1450
15 N 15 I 15 H Q_
g 2.00 i § a
10: 10: 1.40 1.00 10; 1.40
5 1.00 5t 5f
r r I 135
0 o] TS 1.20 0.90 ol ‘
0 10 20 3Q 0 10 20 30 0 10 20 30
X-bin x-bin x-bin

Reverse-time diffusion (data generation)
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ATLAS Collaboration, 2109.02551

Integration into real detector sim.

. Muon
Calorimeters
Spectrometer
FastCaloSimv2

FastCalo | FastCalo | FastCalo Muon

Punchthrough
+Geant4

The ATLAS Collaboration fast simulation (AF3) now
includes a GAN at intermediate energies for pions




ATLAS Collaboration, 2109.02551

Integration into real detector sim.

o | |
 ATLAS Simulation

)
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As expected, the
fast sim. timing Is
independent of
energy, while
Geant4 requires
more time for
higher energy.



ATLAS Collaboration, 2109.02551

Integration into real detector sim.
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The new fast simulation (AF3) significantly improves jet
substructure with respect to the older one (AF2).



Differentiable Simulation

X~ N(u,o)



Differentiable Simulation

X~ N(u,o)

'

X = np.random.normal (mu,sigma)



Differentiable Simulation

X~ N(u,o)

'

X = np.random.normal (mu,sigma)

'

RemOved Z = np.random.uniform(0,1)
randomness from x = sigma*Phiinv(z)+mu
S|m U |atOr (Phiinv = inverse Gaussian CDF)



Differentiable Simulation

Removed
randomness from
simulator

X~ N(u,o)

'

X = np.random.normal (mu,sigma)

'

Z = np.random.uniform(0,1)
X = sigma*Phiinv (z)+mu

(Phiinv = inverse Gaussian CDF)

Now, can compute

d/du and d/do



Differentiable Simulation

Removed
randomness from
simulator

X~ N(u,o)

'

X = np.random.normal (mu,sigma)

'

Z = np.random.uniform(0,1)
X = sigma*Phiinv (z)+mu

(Phiinv = inverse Gaussian CDF)

Now, can compute

d/du and d/do

We can then do:
oSim
ou

sim(ug + €) = sim(yy) + €



Differentiable Simulation

0.4
9 Original
% Moved X ~ /V(,l/t, 6)
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: }
0.0 ' ' ' ' ' ' ' X = np.random.normal (mu,sigma)
§ , }
i Z = np.random.uniform(0,1)
*] | x = sigma*Phiinv (z)+mu
®
1- ' d ¢ (Phiinv = inverse Gaussian CDF)
. ®
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-1 4 4 e
o 1N d/du and d/do
-2 4 \/ @
We can then do:
® . . osSim
T L 4 6 1 33 o o2 o Simlp + €) & simpo) + 75,
X Normalized

2208.02274



Why event moving?

Often, we generate many
simulations with different
parameters (templates) and
fit them to data.

We also often have to
use histograms in order
to interpolate.

With event moving, we can
iInterpolate iIn many
dimensions and eliminate
MC stat. uncertainties!

@xperimental

Data

\
el
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0=0

J

Dimensionality
reduction




A brief word on Autodiff

Simulation
‘ ‘ ‘ e0e ‘ Outputs, x;

Forward pass

Backward pass . ' 4

Simulation
Inputs




Towards a differential parton shower

- iR R

variable (unbounded) number of random
numbers. Let’s start with “Discrete QCD”
where the number is fixed.

Images from 2207.10694; algorithm from Nuclear Physics B 463 (1996) 217



Towards a differential parton shower
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Towards a differential parton shower

Thrust (Ecps = 91.2 GeV)

: — E%)i 2208.02274 -
; F04 - oscer _._ﬁ‘j - As afirst test, we show
I ——— = how this can be used
— : to extract the strong
N T T T T B coupling constant.
< — -
R= - All of these samples
o2l b b b s have the same
ERES - random numbers!
S| )
e b b e
0.75 0.8 0.85 0.9 0.95

T



