Lighting Up Opaque Media

Hui Cao

Dept. of Applied Physics Dept. of Physics Dept. of Electrical Engineering Yale University

1

Opaque Media

Ground Glass

Strong Scattering Media

Cloud

Biological tissue

Sand Storm

National Photonics Initiative

FAST-TRACK ACTION COMMITTEE ON OPTICS AND PHOTONICS:

Building a Brighter Future with Optics and Photonics

APRIL 2014

PRODUCT OF THE Committee on Science OF THE NATIONAL SCIENCE AND TECHNOLOGY COUNCIL Four research opportunities of high priority

Imaging through complex media

To advance the science of light propagation and imaging through scattering, dispersive, and turbulent media

Mesoscopic Electron Transport

Interference of coherent electron wave

Anderson localization Universal conductance fluctuation

Mesoscopic Optics

Classical wave: light, microwave, acoustic wave

Scattering medium

Chaotic cavity

Multi-mode fiber

How to enhance light transmission through strong-scattering medium?

Diffusion Model

Transmission Matrix

Transmission Matrix

Transmission Eigenchannel

Dorokhov, *Solid State Commun.* **51**, 381 (1984) Mello *et al. Ann. Phys.* **181**, 290 (1988)

Optical Wavefront Shaping

Spatial light modulator (SLM)

Structured phase out

Flat phase in

Silicon Waveguide

Yamilov et al, Phys. Rev. Lett. 112, 023904 (2014)

Direct Probing of Light Propagation inside quasi-2D Disordered Structure

Yamilov et al, Phys. Rev. Lett. 112, 023904 (2014)

Maximizing Transmission

Sarma et al, Phys. Rev. Lett. 117, 086803 (2016)

Minimizing Transmission

Sarma et al, Phys. Rev. Lett. 117, 086803 (2016)

Inhomogeneous Scattering

Sarma et al, Appl. Phys. Lett. 110, 021103 (2017)

Quasi-1D waveguide, reflecting sidewall

L >> W

Ojambati et al, Opt. Express 24, 18525 (2016)

Lateral Spreading of Light

Transmission Eigenchannel

Yılmaz et al, Nat. Photon. 13, 352 (2019)

Yılmaz et al, Nat. Photon. 13, 352 (2019)

Channel Width

 $D \propto (kl_t)L$

Yılmaz et al, Nat. Photon. 13, 352 (2019)

22

Experimental Setup

High Transmission Eigenchannel

Yılmaz et al, Nat. Photon. 13, 352 (2019)

Transverse Localization

Yılmaz et al, Nat. Photon. 13, 352 (2019)

Intensity Enhancement

$$\frac{\rho(E_{\text{high}})}{\rho(E_{\text{rand}})} = \frac{\tau_{\text{max}}D_{\text{rand}}^2}{\langle \tau \rangle D_{\text{high}}^2} = 4.4$$

Yılmaz et al, Nat. Photon. 13, 352 (2019)

Merali, Nature 2015

Focusing through Scattering Medium

Vellekoop & Mosk, Opt. Lett. 32, 2309 (2007)

Focusing through Scattering Medium

Vellekoop & Mosk, Opt. Lett. 32, 2309 (2007)

Focusing to Multiple Speckles

$$M_2$$
 output speckles
 $|\psi_{out}\rangle = \tilde{t}|\psi_{in}\rangle$
 M_1 input channels

Hsu et al, Nature Phys. 13, 497 (2017)

30

Correlation-Enhanced Focusing to Large Area

Hsu et al, Nature Phys. 13, 497 (2017)

Coherent Control of Optical Absorption

Chong & Stone, Phys. Rev. Lett. 107, 163901 (2011)

Coherent Control of Optical Absorption

Coherent Control of Optical Absorption

Liew et al, ACS Photon. 3, 449 (2016)

Light Amplification

Random medium with optical gain

Returning field $E = E_1 + E_2 + \dots$

Coherent amplification enhances interference effect

Yamilov et al, *Phys. Rev. E*, 70, 037603 (2004); *Phys. Rev. B* 71, 092201 (2005); *Phys. Rev. E* 74, 056609 (2006); *Physica B*, 405, 3012 (2010).

Conventional Laser

Essential components for a laser

- Gain medium
- Cavity

Multiple Scattering

Multiple scattering increases pathlength of light inside gain medium, enhancing amplification

Mirrorless Laser

Light is trapped inside the gain medium without mirrors

Gain medium

Michael Choma

HC, Progress in Optics 45, 317 (2003)

Laser Speckle

Averaging Out Speckle

Rotating diffuser

Speckle contrast

 $C \propto \frac{1}{\sqrt{N}}$

Laser

Many Random Lasing Modes

Redding et al, Opt. Lett. 36, 3404 (2011)

Speckle-free Full-Field Imaging

Redding et al, Nature Photon. 6, 355 (2012)

Full Field Imaging

Summary

Control light propagation and absorption in strongscattering media by manipulating wave interference

Break the limit of incoherent diffusion to achieve extreme behaviour

Apply random laser to speckle-free full-field imaging

Acknowledgement

Group Members

Sebastien Popoff Brandon Redding Raktim Sarma Seng Fatt Liew Hasan Yilmaz Chia-Wei (Wade) Hsu A. Douglas Stone Yidong Chong Arthur Goetschy

Michael Choma

Charles Schmuttenmaer Stafford Sheehan <u>Missouri Univ. of</u> <u>Science & Technology</u>

> Alexey Yamilov Sasha Patrenko

