QUALIFYING EXAMINATION, Part 1

Solutions

Problem 1: Mathematical Methods

(a) For \(r > 0 \) we find

\[
\nabla^2 \left(\frac{1}{r} \right) = \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} \left(\frac{1}{r} \right) = \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \left(-\frac{1}{r^2} \right) = 0
\]

However for \(r = 0 \) we get \(\frac{1}{r^2} \) because of the \(\frac{1}{r^2} \) factor in front. To calculate the limit \(r \to 0 \), we integrate \(\nabla^2 \left(\frac{1}{r} \right) \) over a small sphere of radius \(a \) surrounding the origin and use Gauss’ theorem (converting a volume integral to a surface integral)

\[
\int_{r \leq a} d^3 \vec{r} \nabla^2 \left(\frac{1}{r} \right) = \int_{r \leq a} d^3 \vec{r} \nabla \cdot \nabla \left(\frac{1}{r} \right)
= \int_{r=a} \nabla \left(\frac{1}{r} \right) \cdot d\vec{S} = \int_{r=a} \left(-\frac{1}{a^2} \right) \hat{e}_r \cdot d\vec{S} = -4\pi \cdot
\]

It follows that

\[
\nabla^2 \left(\frac{1}{r} \right) = -4\pi \delta^3(\vec{r}).
\]

Note: \(\frac{1}{r} \) is the solution to Poisson’s equation with a point charge at the origin with charge \(4\pi \epsilon_0 \).

(b) \[
\Gamma(1) = \int_0^\infty t^0 e^{-t} dt = - e^{-t} \bigg|_0^\infty = 1 .
\]

(c) \[
\Gamma(x + 1) = \int_0^\infty t^x e^{-t} dt = -t^x e^{-t} \bigg|_0^\infty + \int_0^\infty t^{x-1} e^{-t} dt = 0 + x \Gamma(x) ,
\]

where the surface term vanishes at \(t = 0 \) if \(x \geq 0 \).

It follows that \(\Gamma(n + 1) = n \Gamma(n) \) which, given \(\Gamma(1) = 1 \), means

\[
\Gamma(n + 1) = n! .
\]
\(\ln n! = \ln [n(n-1)(n-2) \ldots 1] = \sum_{m=1}^{n} \ln m \simeq \int_{1}^{n} \ln x dx = n \ln n - n + 1 \),

where we can drop the 1 compared to \(n \). Exponentiating, we find

\(n! \approx e^{n \ln n - n} = n^n e^{-n} \).

(e) We have

\(n! = \Gamma(n+1) = \int_{0}^{\infty} t^n e^{-t} dt \).

We rescale \(t = nz \) to obtain

\[n! = n^{n+1} \int_{0}^{\infty} z^n e^{-nz} dz = n^{n+1} \int_{0}^{\infty} e^{-nz + n \ln z} dz \equiv n^{n+1} \int_{0}^{\infty} e^{-nf(z)} dz, \]

where

\(f(z) = z - \ln z \).

The saddle point \(z = z^* \) is determined by the condition \(f'(z) = z - 1/z = 0 \), giving \(z^* = 1 \). We expand \(f(z) \) to second order around \(z^* = 1 \) to find

\[\Gamma(n+1) = n^{n+1} \int_{0}^{\infty} e^{-nf(z)} dz \simeq n^{n+1} e^{-nf(z^*)} \int_{0}^{\infty} e^{-n f''(z^*)(z-z^*)^2} dz. \]

Using \(f''(z^*) = \frac{1}{z^2} \bigg|_{z^*} = 1 \), we obtain

\[n! = n^n e^{-n} \sqrt{2\pi n} \ (1 + \text{corrections}), \]

where we have changed variables to \(w = z - z^* \) and extended the limits to \(w = \pm \infty \) (the integrand is negligible far away from \(z^* \)). We can then use the familiar result for a Gaussian integral

\[\int_{-\infty}^{\infty} e^{-aw^2} dw = \sqrt{\frac{\pi}{a}}. \]

The initial rescaling was done to get a large factor \(n \) in the exponent in front of \(f(z) \) (to justify the saddle-point approximation). It is also possible to carry out the saddle-point approximation directly for \(f(t) = n \ln t - t \), in which case the saddle-point condition \(f'(t^*) = 0 \) gives \(t^* = n \).
Problem 2: Classical Mechanics

(a) The first Lagrangian is invariant under translations in the x direction \(x \rightarrow x + a \) and therefore \(p_x \) (the generator of translations in the x direction) is conserved. It does not depend on time explicitly so \(\partial L/\partial t = -dH/dt = 0 \) and the Hamiltonian \(H = E \) is conserved. The Lagrangian is not invariant under translations in y or under rotations, and therefore \(p_y \) and \(L_z \) are not conserved.

The second Lagrangian is not invariant under translations (in x or y) and therefore \(p_x \) and \(p_y \) are not conserved. It is rotationally invariant and explicitly time independent, and therefore \(L_z \) and \(E \) are conserved.

The third Lagrangian is invariant under translations in x but not under translations in y or under rotations. Therefore \(p_x \) is conserved but \(p_y \) and \(L_z \) are not conserved. Because of the explicit time dependence in \(L \), \(E \) is not conserved.

(b) The potential is time independent, and hence the total energy is conserved:

\[
E = E_0 = \frac{1}{2}mv_0^2 = \text{const.}
\]

The potential is central and provides no torque, hence the angular momentum around the scattering center is conserved

\[
\vec{L} = \vec{L}_0 = mv_0b\hat{z} = \text{const.}
\]

\(L_x = L_y = 0 \) guaranteeing that the motion is in the x-y plane.

(c) Using the effective potential for the reduced 1D motion in the radial coordinate \(r \), the energy can be written as

\[
E = \frac{1}{2}mr^2 + U_{\text{eff}}(r) = \frac{1}{2}mr^2 + \frac{L^2}{2mr^2} - \frac{k}{r^2} = \frac{1}{2}mv_0^2.
\]

At the distance \(r = r_{\text{min}} \) of closest approach \(\dot{r} = 0 \), and we have

\[
\frac{(mv_0b)^2}{2mr_{\text{min}}^2} - \frac{k}{r_{\text{min}}^2} = \frac{1}{2}mv_0^2.
\]

Therefore

\[
r_{\text{min}} = \sqrt{\frac{mv_0^2b^2/2 - k}{mv_0^2/2}} = \sqrt{b^2 - \frac{2k}{mv_0^2}}.
\]

Since \(k > 0 \), \(r_{\text{min}} < b \). Qualitatively this is expected since the potential is attractive.
(d) The horizontal coordinate of the point particle is given by \(x + X \), while its vertical coordinate is \(y = x \tan \alpha \). The kinetic energy \(T \) of the system is then

\[
T = \frac{1}{2} M \dot{X}^2 + \frac{1}{2} m (\dot{X} + \dot{x})^2 + \frac{1}{2} m y^2 = \frac{1}{2} (M + m) \dot{X}^2 + m \dot{X} \dot{x} + \frac{1}{2} m (1 + \tan^2 \alpha) \dot{x}^2
\]

The potential energy of the particle is

\[
V = mg y = mg x \tan \alpha.
\]

The Lagrangian of the system is therefore:

\[
\mathcal{L} = T - V = \frac{1}{2} (M + m) \dot{X}^2 + m \dot{X} \dot{x} + \frac{1}{2} m (1 + \tan^2 \alpha) \dot{x}^2 - mg x \tan \alpha.
\]

The equations of motion are:

\[
dt \left(\frac{\partial L}{\partial \dot{X}} \right) - \frac{\partial L}{\partial X} = 0 \rightarrow (M + m) \ddot{X} + m \ddot{x} = 0.
\]

\[
dt \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0 \rightarrow m \ddot{X} + m (1 + \tan^2 \alpha) \ddot{x} + mg \tan \alpha = 0.
\]

From the first equation we get

\[
\ddot{X} = - \frac{m}{M + m} \ddot{x}.
\]

Substituting in the second equation, we find

\[
\ddot{x} = - \frac{(M + m) g \sin \alpha \cos \alpha}{M + m \sin^2 \alpha}.
\]

We then have

\[
\ddot{X} = \frac{mg \sin \alpha \cos \alpha}{M + m \sin^2 \alpha}.
\]
Problem 3: Electromagnetism I

(a) Using Coulomb’s law

\[V(r, \theta) = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{r_+} + \frac{1}{r_-} - \frac{2}{r} \right) \]

where (applying the law of cosines)

\[r_\pm = \left(r^2 + a^2 \mp 2ra \cos \theta \right)^{1/2}. \]

(b) Expanding \(1/r_\pm\) to order \(a^2/r^2\) (all higher order terms will vanish in the limit), we have

\[\frac{1}{r} \approx \frac{1}{r} \left(1 - \frac{a^2}{2r^2} \pm \frac{a}{r} \cos \theta + \frac{3a^2}{2r^2} \cos^2 \theta \right). \]

Substituting into the potential, we get

\[V(r, \theta) = \frac{Q}{4\pi\epsilon_0 r^3} \left(3 \cos^2 \theta - 1 \right) = \frac{Q}{2\pi\epsilon_0 r^3} P_2(\cos \theta), \]

where we have used the expression for the second Legendre polynomial \(P_2\).

(c) Since the conducting sphere is grounded \(V(r = R) = 0\). We also know that \(V(r \to \infty) = 0\). The uniqueness of the solution of Laplace’s equation with boundary conditions gives us \(V(r) = 0\) outside the sphere.

(d) Inside the sphere, we use the general solution of Laplace’s equation

\[V_{\text{in}} = \sum \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta). \]

The potential is continuous across \(r = R\). Using the result in (c), we have

\[V_{\text{in}}(R, \theta) = 0. \]

Since this is true for all angles \(\theta\), the sum must vanish term by term. This gives

\[-A_l R^l = \frac{B_l}{R^{l+1}}. \]

In the limit \(r \to 0\) \((r \ll R)\), we match the solution to the result from part. This gives us

\[B_l \neq 2, \quad B_2 = \frac{Q}{2\pi\epsilon_0}. \]

Using the first set of relations between \(A_l\) and \(B_l\), we find
Thus the potential inside is given by

\[V_{\text{in}}(r, \theta) = \frac{Q}{2\pi \epsilon_0 r^3} \left(1 - \frac{r^3}{R^5} \right) P_2(\cos \theta). \]
Problem 4: Electromagnetism II

(a) The voltage per turn has to balance the induced electro-motive force (emf)

\[V = -\varepsilon = \frac{d\Phi}{dt} = \pi a^2 \frac{dB}{dt} \]

(b) Using a rectangular Amperian loop outside the solenoid, one can show that the field outside (parallel to the cylinder axis) is independent of the radial distance \(r \). Since the field vanishes at \(r \rightarrow \infty \), it must be zero everywhere outside the cylinder.

(c) From symmetry considerations \(\vec{B} \) is along the cylinder’s axis. Using a rectangular Amperian loop for the field \(H \) with one side inside the solenoid and another side outside, gives

\[H = nI \quad \text{or} \quad I = \frac{B(t)}{\mu n} . \]

(d) We use a circular loop \(C \) around the cylinder with radius \(r \). By symmetry the magnitude of \(\vec{A} \) is constant along the loop and is tangential along the same direction as the current through the curled wire. Using Stokes theorem with \(\nabla \times \vec{A} = \vec{B} \) we have

\[\oint_C \vec{A} \cdot d\vec{l} = \int_S \vec{B} \cdot d\vec{S} \equiv \Phi , \]

where \(\Phi \) is the magnetic flux through the loop.

We find for \(r > a \)

\[2\pi r A(r, t) = B(t)\pi a^2 , \]

\[A(r, t) = \frac{a^2}{2r} B(t) , \]

and for \(r < a \)

\[2\pi r A(r, t) = \pi r^2 B(t) , \]

\[A(r, t) = \frac{r}{2} B(t) . \]

(e) The field is uniform inside the torus. Since \(\nabla \cdot \vec{B} = 0 \), the flux of \(B \) is constant around the torus. Since the cross section of the torus is the same everywhere, \(B \) must be a constant inside the torus. Since the gap \(h \) is small, \(B \) in the gap will be near homogeneous (negligible fringe fields) and will have the same value as inside the torus.

To find the value of \(B \), we use a circular Amperean loop of radius \(Z \) around the torus. We have

\[\oint_Z \vec{H} d\vec{l} = NI \]
or
\[
\frac{B}{\mu} (2\pi Z - h) + \frac{B}{\mu_0} h = NI .
\]

This gives
\[
B = \frac{\mu \mu_0 NI}{\mu_0 (2\pi Z - h) + \mu h} \approx \frac{\mu \mu_0 NI}{\mu_0 2\pi Z + \mu h} .
\]

The current \(I \) in the wire is \(I = \frac{V}{\pi} \), giving the final answer
\[
B = \frac{\mu \mu_0 NV}{R (2\mu_0 \pi Z + \mu h)} .
\]