QUALIFYING EXAMINATION, Part 2

Solutions

Problem 1: Quantum Mechanics I

(a) Take $|n\rangle$ to be the true energy eigenstates of H

$$H|n\rangle = E_n|n\rangle$$
,

with eigenvalues E_n (n = 0, 1, ...). Since E_0 is the ground-state energy, $E_0 \leq E_n$. Then

$$\langle \psi | H | \psi \rangle = \sum_{n} E_{n} |\langle n | \psi \rangle|^{2} \ge E_{0} \sum_{n} |\langle n | \psi \rangle|^{2} = E_{0} ,$$

where we have used the fact that ψ is normalized, $\sum_n |\langle n|\psi\rangle|^2=1.$

(b) The trial wave function is spherically symmetric and thus has l = 0. The Hamiltonian of the hydrogen atom is rotationally invariant, and thus l is a good quantum number. In using the variational method, it is advantageous to choose a trial wave function that has the same values of the good quantum numbers as the exact ground state. Since the true ground state has l=0, we choose a trial wave function that also has good l=0.

(c) The expectation value of V is

$$\langle \psi | V | \psi \rangle = \frac{1}{N^2} \int_0^\infty \left(-\frac{e^2}{r} \right) e^{-2\alpha r^2} r^2 dr = -\frac{1}{N^2} \frac{e^2}{4\alpha} ,$$

where

$$N^{2} = \int_{0}^{\infty} e^{-2\alpha r^{2}} r^{2} dr = \frac{1}{8\alpha} \sqrt{\frac{\pi}{2\alpha}} .$$

Using the given result for the expectation value of T, we find

$$E(\alpha) = \langle \psi | T | \psi \rangle + \langle \psi | V | \psi \rangle = \frac{3\hbar^2 \alpha}{2m} - 2e^2 \sqrt{\frac{2\alpha}{\pi}} \,.$$

(d) To find the best variational estimate for the given Gaussian trial wave function, we minimize $E(\alpha)$ with respect to α . The first derivative

$$\frac{dE}{d\alpha} = \frac{3\hbar^2}{2m} - e^2 \sqrt{\frac{2}{\pi\alpha}}$$

vanishes for

$$\alpha = \alpha_{\min} = \frac{8}{9\pi} \left(\frac{me^2}{\hbar^2}\right)^2 \;.$$

It is easy to verify that $\frac{d^2 E(\alpha)}{d\alpha^2} = e^2 \sqrt{\frac{1}{2\pi\alpha^3}} > 0$, and thus $E(\alpha)$ has a minimum at α_{\min} . The variational estimate for the energy is then

$$E_{\min} = E\left(\alpha_{\min}\right) = -\frac{8}{3\pi} \frac{me^4}{2\hbar^2} .$$

This value differs from the exact ground-state energy of $-\frac{me^4}{2\hbar^2}$ by only a factor of $\frac{8}{3\pi} \approx 0.85$.

Problem 2: Quantum Mechanics II

(a) We have

$$\hat{H}_{JC} \left| 0, g \right\rangle = \left(\hat{H}_o + \hat{H}_a + \hat{H}_{int} \right) \left| 0, g \right\rangle = \left(\frac{1}{2} \hbar \omega_o + 0 + 0 \right) \left| 0, g \right\rangle = \frac{1}{2} \hbar \omega_o \left| 0, g \right\rangle$$

Thus $|0,g\rangle$ is an eigenstate of \hat{H}_{JC} with eigenvalue $\frac{1}{2}\hbar\omega_o$.

(b) To show that \hat{N} is conserved, we verify that it commutes with \hat{H}_{JC}

$$\begin{split} \left[\hat{H}_{JC}, \hat{N} \right] &= \left[\hat{H}_o, \hat{N} \right] + \left[\hat{H}_a, \hat{N} \right] + \left[\hat{H}_{int}, \hat{N} \right] \\ &= 0 + 0 + \kappa \hat{a} \left[\hat{\sigma}^+, \left| e \right\rangle \left\langle e \right| \right] + \kappa \hat{a}^\dagger \left[\hat{\sigma}^-, \left| e \right\rangle \left\langle e \right| \right] + \kappa \left[\hat{a}, \hat{n} \right] \hat{\sigma}^+ + \kappa \left[\hat{a}^\dagger, \hat{n} \right] \hat{\sigma}^- \\ &= -\kappa \hat{a} \hat{\sigma}^+ + \kappa \hat{a}^\dagger \hat{\sigma}^- + \kappa \hat{a} \hat{\sigma}^+ - \kappa \hat{a}^\dagger \hat{\sigma}^- = 0 \end{split}$$

(c) We verify that $|n,g\rangle$ and $|n,e\rangle$ are eigenstates of \hat{N}

$$\hat{N} |n, g\rangle = \Lambda_{n,g} |n, g\rangle$$
$$\hat{N} |n, e\rangle = \Lambda_{n,e} |n, e\rangle,$$

with eigenvalues $\Lambda_{n,g} = n$ and $\Lambda_{n,e} = n + 1$ for $n = 0, 1, \cdots$.

For the eigenvalue $\Lambda_{0,g} = 0$, there is only one eigenstate $|0,g\rangle$. For the eigenvalue $\Lambda_{n,g} = \Lambda_{n-1,e} = n$ with n = 1, 2..., there is a two-fold degeneracy associated with eigenstates $|n,g\rangle$ and $|n-1,e\rangle$.

(d) Since $\left[\hat{H}_{JC}, \hat{N}\right] = 0$, \hat{H}_{JC} can be represented as a block diagonal matrix in the eigenbasis associated with \hat{N} . More specifically, \hat{H}_{JC} has the block diagonal form

$$\hat{H}_{JC} = \begin{pmatrix} (H_0)_{1 \times 1} & & & \\ & (H_1)_{2 \times 2} & & & \\ & & (H_2)_{2 \times 2} & & \\ & & & \ddots & \\ & & & & (H_k)_{2 \times 2} & \\ & & & & & \ddots \end{pmatrix}$$

in the basis of $\{|0,g\rangle, |0,e\rangle, |1,g\rangle, |1,e\rangle, \cdots\}$. According to part (a), we have $H_0 = \frac{1}{2}\hbar\omega_o$. For $n = 1, 2, \ldots$, the 2×2 diagonal block associated with the basis states $\{|n - 1, e\rangle, |n, g\rangle\}$ is

$$(H_n)_{2\times 2} = \begin{pmatrix} \left(n - \frac{1}{2}\right)\hbar\omega_o + \hbar\omega_a & \hbar\kappa\sqrt{n} \\ \hbar\kappa\sqrt{n} & \left(n + \frac{1}{2}\right)\hbar\omega_o \end{pmatrix}$$
$$= \begin{pmatrix} n\hbar\omega_o + \frac{1}{2}\hbar\omega_a & 0 \\ 0 & n\hbar\omega_o + \frac{1}{2}\hbar\omega_a \end{pmatrix} + \begin{pmatrix} -\frac{1}{2}\hbar\delta & \hbar\kappa\sqrt{n} \\ \hbar\kappa\sqrt{n} & +\frac{1}{2}\hbar\delta \end{pmatrix}$$

with $\delta = \omega_o - \omega_a$.

The eigenvalues of \hat{H}_{JC} can be computed by finding the eigenvalues of these 2×2 matrices.

Statistical Mechanics I

(a) There are $\frac{N!}{n_1!n_2!}$ many-particle states with n_1 particles in the state with energy 0 and n_2 particles in the excited state ϵ . The energy of each such many-particle state is $n_1 \cdot 0 + n_2 \epsilon = n_2 \epsilon$ The partition function Z is then given by

$$Z = \sum_{\substack{n_1, n_2\\n_1+n_2=N}} \frac{N!}{n_1! n_2} e^{-\beta n_2 \epsilon} = (1 + e^{-\beta \epsilon})^N ,$$

where $\beta = 1/k_B T$. This result can also be derived from $Z = z^N$, where $z = \sum_i e^{-\beta \epsilon_i}$ is the single-particle partition function (this holds for a system of N non-interacting distinguishable particles). The given system has two levels, 0 and ϵ , so that $z = 1 + e^{-\beta \epsilon}$.

(b) The energy of the system is found from

$$E = -\frac{\partial \ln Z}{\partial \beta} = N \frac{\epsilon}{e^{\beta \epsilon} + 1} \; .$$

The heat capacity is then

$$C = \frac{dE}{dT} = Nk_B \left(\frac{\epsilon}{k_B T}\right)^2 \frac{e^{\beta\epsilon}}{(e^{\beta\epsilon} + 1)^2} \,.$$

In the high-temperature limit $kT \gg \epsilon$, $\beta \epsilon \rightarrow 0$ and

$$C \approx \frac{1}{4} N k_B \left(\frac{\epsilon}{kT}\right)^2 \;.$$

(c) The entropy can be calculated from $S = -\partial F/\partial T$, where $F = -k_B T \ln Z$ is the free energy. Using $F = -Nk_B T \ln(1 + e^{-\beta\epsilon})$, we find

$$S = Nk_B \ln(1 + e^{-\beta\epsilon}) + \frac{Nk_B T e^{-\beta\epsilon}}{1 + e^{-\beta\epsilon}} \epsilon \frac{1}{k_B T^2}$$

= $Nk_B \ln(1 + e^{-\beta\epsilon}) + \frac{N\epsilon}{T} \frac{e^{-\beta\epsilon}}{1 + e^{-\beta\epsilon}} = Nk_B \left[\ln(1 + e^{-\beta\epsilon}) + \beta\epsilon \frac{e^{-\beta\epsilon}}{1 + e^{-\beta\epsilon}} \right].$

Another way to calculate the entropy is to use F = E - TS and the known expressions for F and E.

At the high-temperature limit, $\beta \epsilon \to 0$, and

$$S = Nk_B \ln 2 \; .$$

This entropy is just $k_B \ln \Omega$ where $\Omega = 2^N$ is the total number of states.

In the limit $T \to 0, \, \beta \epsilon \to \infty, \, (\beta \epsilon) e^{-\beta \epsilon} \to 0$ and

S=0 .

At T = 0, the system is in its non-degenerate ground state and S = 0.

(d) To calculate $\langle n_2 \rangle$, we use

$$\langle n_2 \rangle = -\frac{\partial}{\partial(\beta\epsilon)} \ln Z = N \frac{e^{-\beta\epsilon}}{1 + e^{-\beta\epsilon}} \,.$$

 $\langle n_1 \rangle$ is determined from $\langle n_1 \rangle = N - \langle n_2 \rangle$. We find

$$\langle n_1 \rangle = N \frac{1}{1 + e^{-\beta\epsilon}} \; .$$

Using the expression for the entropy in part (c) and the above expressions for the occupations, one finds after some algebra

$$S = -Nk_B \left(\frac{\langle n_1 \rangle}{N} \ln \frac{\langle n_1 \rangle}{N} + \frac{\langle n_2 \rangle}{N} \ln \frac{\langle n_2 \rangle}{N}\right) \,.$$

Problem 4: Statistical Mechanics II

(a) A photon with momentum $\vec{p} = \hbar \vec{k}$ has energy $\epsilon_{\vec{k}} = \hbar \omega_{\vec{k}} = \hbar c |\vec{k}|$. Imposing periodic boundary conditions, the allowed values of \vec{k} are $\vec{k} = \frac{2\pi}{L}\vec{n}$ with $\vec{n} = (n_x, n_y)$ having integer components. Thus, $\omega_{\vec{k}} = c\frac{2\pi}{L}\sqrt{n_x^2 + n_y^2}$.

To determine the density of states, we consider the number of possible photon states in a volume $d^2\vec{k}$ of momentum space. The number of allowed momentum values between \vec{k} and $\vec{k} + d\vec{k}$ are

$$\frac{L^2}{(2\pi)^2} d^2 \vec{k} = \frac{L^2}{2\pi} k dk = \frac{L^2}{2\pi c^2} \omega d\omega.$$

Thus the density of states of photons with frequency ω is

$$g(\omega) = \frac{A}{2\pi c^2}\omega.$$

(b) Writing $\beta = 1/k_B T$, the grand-canonical quantum partition function is

$$Z(T) = \prod_{\vec{k}} \sum_{n_{\vec{k}}=0}^{\infty} e^{-\beta \epsilon_{\vec{k}} n_{\vec{k}}} = \prod_{\vec{k}} \frac{1}{1 - e^{-\beta \epsilon_{\vec{k}}}},$$

where $n_{\vec{k}}$ is the number of photons with wavenumber \vec{k} , giving

$$\ln Z(T) = -\sum_{\vec{k}} \ln(1 - e^{-\beta \epsilon_{\vec{k}}}).$$

This is just the partition function of non-interacting bosons with a chemical potential $\mu = 0$. For photons $\mu = 0$ since their number N is not fixed a priori but is determined from the equilibrium condition $\mu = \partial F / \partial N|_{T,A} = 0$.

For large area, the photon spectrum becomes quasi-continuous, and the sum above can be approximated as an integral over ω using the density of states:

$$\ln Z(T) \approx -\int_0^\infty d\omega g(\omega) \ln(1 - e^{-\beta\hbar\omega}) = -\frac{A}{2\pi c^2} \int_0^\infty d\omega \omega \ln(1 - e^{-\beta\hbar\omega}).$$

(c) The total energy is

$$U = -\frac{\partial \ln Z}{\partial \beta} = \frac{\hbar A}{2\pi c^2} \int_0^\infty d\omega \frac{\omega^2 e^{\beta\hbar\omega}}{1 - e^{-\beta\hbar\omega}}.$$

The total energy can also be derived from

$$U = \sum_{\vec{k}} \epsilon_{\vec{k}} \langle n_{\vec{k}} \rangle \approx \int_0^\infty d\omega g(\omega) \hbar \omega \langle n_\omega \rangle ,$$

where

$$\langle n_{\omega} \rangle = -\frac{\partial}{\partial(\beta\hbar\omega)} \ln Z(T) = \frac{1}{e^{\beta\hbar\omega} - 1}$$

is the average occupation in a photon state with frequency ω .

Thus, in two dimensions the spectral energy density is

$$u(\omega,T) = \frac{\hbar}{2\pi c^2} \frac{\omega^2}{e^{\beta\hbar\omega} - 1}.$$

Substituting in the integral $x = \beta \hbar \omega$, the total energy density is

$$\frac{U}{A} = \frac{k_B^3 T^3}{2\pi c^2 \hbar^2} \int_0^\infty dx \frac{x^2}{e^x - 1} = \frac{k_B^3}{\pi c^2 \hbar^2} \zeta(3) T^3,$$

where we have represented the dimensionless integral using the Riemann ζ function

$$\zeta(n+1) = \frac{1}{n!} \int_0^\infty dx \frac{x^n}{e^x - 1}.$$

(d) First derivation of entropy: at fixed area

$$dS = \frac{1}{T}dU = \frac{1}{T}\left(\frac{3Ak_B^3\zeta(3)}{\pi c^2\hbar^2}\right)T^2dT,$$

so the total entropy is given by integrating

$$S = \left(\frac{3Ak_B^3\zeta(3)}{\pi c^2\hbar^2}\right)\int TdT = \left(\frac{3Ak_B^3\zeta(3)}{2\pi c^2\hbar^2}\right)T^2.$$

Here we have fixed the constant of integration by demanding that the entropy vanishes at T = 0, since the system has a unique ground state.

Second derivation of entropy: consider the free energy $F = -k_B T \ln Z$, in which case

$$S = -\frac{\partial F}{\partial T}\Big|_{A} = -\frac{\partial}{\partial T}\frac{Ak_{B}T}{2\pi c^{2}}\int_{0}^{\infty}d\omega\omega\ln(1-e^{-\beta\hbar\omega})$$
$$= -\frac{\partial}{\partial T}\frac{Ak_{B}^{3}T^{3}}{2\pi c^{2}\hbar^{2}}\int_{0}^{\infty}dxx\ln(1-e^{-x}) = \left(\frac{3Ak_{B}^{3}T^{2}}{2\pi c^{2}\hbar^{2}}\right)\left[-\int_{0}^{\infty}dxx\ln(1-e^{-x})\right]$$

where the integral in brackets in also equal to $\zeta(3)$ upon integration by parts.

On the other hand, the total number of photons is given by

$$N \approx \int_0^\infty d\omega g(\omega) \langle n_\omega \rangle = \frac{A}{2\pi c^2} \int_0^\infty d\omega \omega \frac{1}{e^{\beta\hbar\omega} - 1} = \frac{A}{2\pi\beta^2 c^2\hbar^2} \int_0^\infty dx \frac{x}{e^x - 1} = \frac{A}{2\pi\beta^2 c^2\hbar^2} \zeta(2).$$

Then the entropy per photon is given by

$$\frac{S}{N} = \left(\frac{3Ak_B^3\zeta(3)T^2}{2\pi c^2\hbar^2}\right) \left(\frac{Ak_B^2\zeta(2)T^2}{2\pi c^2\hbar^2}\right)^{-1} = 3\frac{\zeta(3)}{\zeta(2)}k_B$$