QUALIFYING EXAMINATION, Part 2

Solutions

Problem 1: Quantum Mechanics I

(a) Take |n) to be the true energy eigenstates of H
Hln) = Ey|n) ,

with eigenvalues F,, (n =0,1,...). Since Ej is the ground-state energy, Ey < E,,. Then

WIH|Y) = Bal(n|)]> > B> [(n|e)]” = Eq ,
where we have used the fact that ¢ is normalized, Y [(n[¢)|* = 1.

(b) The trial wave function is spherically symmetric and thus has { = 0. The Hamiltonian
of the hydrogen atom is rotationally invariant, and thus [ is a good quantum number. In
using the variational method, it is advantageous to choose a trial wave function that has
the same values of the good quantum numbers as the exact ground state. Since the true
ground state has 1=0, we choose a trial wave function that also has good [ = 0.

(c) The expectation value of V' is
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Using the given result for the expectation value of 7', we find

(@) = (GIT1) + (0lVIv) = 2 gz, 22

where

(d) To find the best variational estimate for the given Gaussian trial wave function, we
minimize F («) with respect to a. The first derivative
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vanishes for
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It is easy to verify that dQE—(Qa) =e? L > 0, and thus E(a) has a minimum at cp;,.
Yy y do 2ma

The variational estimate for the energy is then

8 me*

Enin = E (amin) = 37 2R

This value differs from the exact ground-state energy of — ’;1;; by only a factor of % ~ 0.85.




Problem 2: Quantum Mechanics 11

(a) We have
. N N N 1 1
HJC |07g> = <Ho + Ha + Hmt) ‘Oag> = (5%0 + 0 + 0) |Oag> = éhwo |Oag> .

Thus |0, ) is an eigenstate of H ¢ with eigenvalue Thuw,.

(b) To show that N is conserved, we verify that it commutes with H ¢

|:-[A{J07Ni| - [-HoaN] + |:]A{a7]\7i| + [HintJN}
=0+40+ka[67,|e) (e|]] +ra' [67,]e) (e]] + x[a,n] 6" + k [aT, 7] 6~
+
0.

= —ka6*+ + ka'6~ + ka6t — rkalo™ =

(¢) We verify that |n, g) and |n, e) are eigenstates of N
Nn, g) =Any n,9)
Nin,e) = Apeln,e),

with eigenvalues A, ;, =nand A, =n+1forn=0,1,---.

For the eigenvalue Ay, = 0, there is only one eigenstate |0, g). For the eigenvalue
Apg =AM 1.=nwithn=1,2..., there is a two-fold degeneracy associated with eigen-
states |n,g) and [n — 1,€).

(d) Since [ﬁ[ JC,N] = 0, Hjo can be represented as a block diagonal matrix in the

eigenbasis associated with N. More specifically, H sc has the block diagonal form

(lyb)lxl
(}]i)2x2
N (H2)2><2

(}]k)QXQ

in the basis of {|0,9),10,e),[1,9),[1,€),---}. According to part (a), we have Hy = 3w,
Forn =1,2,..., the 2x2 diagonal block associated with the basis states {|n — 1,¢€) ,|n,g)}
1s
(H,),., = (n—%)hwo—i-hwa hk/n
n2xz hky/n (n+ 1) hw,
_ (nhw, + %hwa 0 n —%hé hk/n
- 0 nhw, + 3hw, hryn +3hé )°



with 6 = w, — w,.

The eigenvalues of H;c can be computed by finding the eigenvalues of these 2 x 2
matrices.



Statistical Mechanics 1

(a) There are %7;2, many-particle states with n; particles in the state with energy 0

and ng particles in the excited state €. The energy of each such many-particle state is
ny - 0 4+ ngoe = nge The partition function 7 is then given by

where 3 = 1/kgT. This result can also be derived from Z = 2V, where z = Y, e 7% is
the single-particle partition function (this holds for a system of N non-interacting distin-
guishable particles). The given system has two levels, 0 and ¢, so that z = 1 + e~7¢.

(b) The energy of the system is found from

_aan _N €

E= = )
0B efe+1

The heat capacity is then

dE e \°  efe
C = — = Nkj .
dT b (kBT) (efe +1)2

In the high-temperature limit k7" > €, fe — 0 and

C~ iNkB <i>2 .

(c) The entropy can be calculated from S = —0F /0T, where F' = —kgT'In Z is the free
energy. Using F' = —NkpT In(1 + e%¢), we find

N]{IBTG_ﬁE 1
S = Nkgln(l4e "
pIn(l+e77) + 1+ e—Pe EkBTz
Ne e Pe e Pe
= N 1 1 —Be ——:N l 1 —Be R
k‘B n( +e )+ T 1—|-e*56 kB H( +e )+561+e*56

Another way to calculate the entropy is to use F' = E'—T'S and the known expressions
for F' and F.

At the high-temperature limit, fe — 0, and
S = N]{IB In2.

This entropy is just kg InQ where Q = 2% is the total number of states.
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In the limit 7" — 0, B¢ — oo, (Be)e P — 0 and
S=0.

At T = 0, the system is in its non-degenerate ground state and S = 0.

(d) To calculate (ns), we use

Using the expression for the entropy in part (c) and the above expressions for the
occupations, one finds after some algebra

S = —Nkg <<”1> )y 2y <”2>) .

N N N N



Problem 4: Statistical Mechanics 11

(a) A photon with momentum p’ = Rk has energy € = hwyp = hc|E|. Imposing periodic
boundary conditions, the allowed values of k are k = 2Z7 with 7 = (n,, n,) having integer
components. Thus, wp = c%”, /i +nz.

To determine the density of states, we consider the number of possible photon states
in a volume d?k of momentum space. The number of allowed momentum values between

k and k + dk are
L? L?

2
L P’k = —kdk =
27

(2m)?
Thus the density of states of photons with frequency w is
A

= w.
27 c?

wdw.

272

g(w)

(b) Writing 8 = 1/kgT, the grand-canonical quantum partition function is

- —Bepny 1
20) =13 e = [ =t
kong=

where nj is the number of photons with wavenumber E, giving
mZ(T)=-> In(l—e %)
i

This is just the partition function of non-interacting bosons with a chemical potential
1 = 0. For photons pu = 0 since their number N is not fixed a priori but is determined
from the equilibrium condition p = 0F/ON|r 4 = 0.

For large area, the photon spectrum becomes quasi-continuous, and the sum above
can be approximated as an integral over w using the density of states:

A / dwwIn(1 — e,
0

272

InZ(T) ~ — /Ooo dwg(w)In(1 — e M) = —

(c) The total energy is

U=—-

dlnZ  hA /Oodw w2ebhw
0B 2mc® ), 1 — e P’

The total energy can also be derived from

U=Z}W@*Lﬁmﬂ@mmd’



where
1

(ng,) = —LIDZ(T) e

O(Bhw)
is the average occupation in a photon state with frequency w.
Thus, in two dimensions the spectral energy density is
h w?
uw,T) = ———.
(. T) 2me? el — 1

Substituting in the integral x = Shw, the total energy density is

U k)3T3 [ee) 2 k‘3
AL : / dz—2 B_(3)T3,
0

A - 2mwc?h? et —1 - mc2h?

where we have represented the dimensionless integral using the Riemann ¢ function

n

1 [ x
1) =— .
((n+1) oy /0 dx I
(d) First derivation of entropy: at fixed area
1 1 [(3AK%C(3)
dS = —dU = — ( 2288800 gy
5 T v T ( mc2h? ’

so the total entropy is given by integrating
3AKLC(3) 3AELC(3)
S=(—"L2=) [ Tdl = | 2>~ | T*
( mwc?h? / 27 h?
Here we have fixed the constant of integration by demanding that the entropy vanishes
at T' = 0, since the system has a unique ground state.

Second derivation of entropy: consider the free energy F' = —kgT In Z, in which case
oF 0 AkgT [
S = ——| =—== dwwIn(1 — e=PM
or|, ~  oT 2rc? /0 ww In(1 =€)

OT 2nc2h? 2mc2h?

where the integral in brackets in also equal to ((3) upon integration by parts.

3 3 00 3 72 o
_ a AkBT / dﬂj‘&}‘ ln(l o 6733) — (SAkBT ) |:_/ d$$ ln(l _ efﬁ)
0 0

On the other hand, the total number of photons is given by

N =~ d = —— d = d = 2).
/o wglw)n) 22 /0 Wbl 1 T 2np2R? /0 Y1 27T5202h2c< )

Then the entropy per photon is given by

S _ (BARRCB)T?Y (ARRC)T*\ T _ ¢(3),
N_< 212 h? )( 2mc2h? ) @)




