
QUALIFYING EXAMINATION, Part 2

Solutions

Problem 1: Electromagnetism I

(a) Since our system has spherical symmetry the electric field and potential have, respec-
tively, the form E = E(r) r̂ and ϕ = ϕ(r).

We use the integral form of Gauss’s law to determine the electric field. For r < R, we
have
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or
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For r > R, we find
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1

r2
.

Since E = −∇ϕ, we can find the electrostatic potential by integrating the electric
field. Up to an integration constant, the potential is given by ϕ(r) = −

∫
Er(r)dr. For

r > R, using the boundary condition φ(r)→ 0 for r →∞, we find
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For r < R, we find
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where C is an integration constant. We determine C using the continuity condition for the
electrostatic potential at r = R, and find C = −3

2
q (4πε0R)−1. Therefore, the potential

for r < R is
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.

Alternatively, this problem can be solved by finding the solution to Poisson’s (Laplace’s)
equation for r < R (r > R). In this method, we would find the solution to the differential
equation ∇2ϕ(r) = −ρ(r)/ε0. The electric field would then computed using E = −∇ϕ.

(b) The electric field and the potential are sketched in the figure.
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(c) The stable equilibrium position is at the origin r = 0, at which the force due to the
field of the charged sphere vanishes.

(d) In equilibrium the total force vanishes

Fsphere + Fext = 0 .

or
qE(r)r̂ + qE0x̂ = 0 .

Using the expression for E(r) from part (a) inside the sphere, we find for the new equi-
librium position

d = E0
4πε0R

3

q
x̂ .

We can also minimize the total potential energy obtained by adding −E0x to the elec-
trostatic potential inside the sphere.

(e) Outside the sphere, we can take its charge −q to be at the origin. Hence, the superpo-
sition this negative charge with the positive point charge (+q) gives the system a dipole
moment of

p = q d = (4π ε0R
3)E0x̂ .
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(f) Comparing the expression in (e) with with p = αE, we find

α = 4π ε0R
3 .

Interestingly, the polarizability depends only on the radius of our classical atom; the larger
the radius the larger the polarizability, meaning that our classical atom exhibits a larger
response to a given applied field.
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Problem 2: Electromagnetism II

(a) Using Biot-Savart Law (in SI units):

d ~B =
µ0I d~l × r̂

4πr2
,

where d~l is the differential directed length of the current, and r is the distance from
the differential current to the observation point. Using the cylindrical symmetry and
integrating along the loop (equivalent to multiplying by by 2πR), we find

Bz =
µ0IR

2

2 (R2 + z2)3/2
[SI] .

or

Bz =
2πIR2

c (R2 + z2)3/2
[Gaussian] .

(b)

Bz =
µ0IR

2

2

 1[
R2 + (H − z)2

]3/2 +
1[

R2 + (H + z)2
]3/2

 [SI] .

(c)

Figure 1: Helmholtz
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(d)

Figure 2: Anti-Helmholtz

(e) Near z = 0, we have ∂Bz/∂z = ηI0.

Using Maxwell’s equation

∇ ·B = ∂Bz/∂z + ∂By/∂y + ∂Bx/∂x = 0 .

By cylindrical symmetry ∂By/∂y = ∂Bx/∂x, so ∂Bx/∂x = ∂By/∂y = −ηI0/2.

(f) By Faraday’s Law, the electromotive force along a loop is E = −dΦ

dt
,where Φ is the

magnetic flux through the loop. Here, the loop is a ring of wire of radius r where the field
is nearly constant over the area of the ring. From part (e) Bz(t) = Iz = ηI0z cos(ω0t).

The flux through the small loop is Φ(z, t) = πr2ηI0z cos(ω0t). Thus the induced emf
is E = πr2ηI0ω0z sin(ω0t), and the current is

Iring =
E
Z0

=
πr2ηI0ω0z sin(ω0t)

Z0

.
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