QUALIFYING EXAMINATION, Part 2
Solutions

Problem 1: Electromagnetism I

(a) Since our system has spherical symmetry the electric field and potential have, respec-
tively, the form E = E(r) 7 and ¢ = ¢(r).

We use the integral form of Gauss’s law to determine the electric field. For r < R, we
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For r > R, we find
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Since E = —V, we can find the electrostatic potential by integrating the electric
field. Up to an integration constant, the potential is given by ¢(r) = — [ E.(r)dr. For
r > R, using the boundary condition ¢(r) — 0 for r — oo, we find
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For r < R, we find
o(r) = —i—l (q) r+C,
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where C'is an integration constant. We determine C' using the continuity condition for the
electrostatic potential at r = R, and find C' = —% q (4megR)~!. Therefore, the potential
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Alternatively, this problem can be solved by finding the solution to Poisson’s (Laplace’s)
equation for r < R (r > R). In this method, we would find the solution to the differential
equation V2p(r) = —p(r)/eo. The electric field would then computed using E = —V.

(b) The electric field and the potential are sketched in the figure.

1



E,(r) Region 1 Region 2

(r <R) (r>R)

T
£ ()
ED @)
@(r)
R >
r =0 r=R

(c) The stable equilibrium position is at the origin » = 0, at which the force due to the
field of the charged sphere vanishes.

(d) In equilibrium the total force vanishes

Fsphe’/‘e + Feact =0.
or

qE(r)r + qEoz = 0.

Using the expression for F(r) from part (a) inside the sphere, we find for the new equi-
librium position
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We can also minimize the total potential energy obtained by adding — Eyz to the elec-
trostatic potential inside the sphere.

(e) Outside the sphere, we can take its charge —¢q to be at the origin. Hence, the superpo-
sition this negative charge with the positive point charge (+¢) gives the system a dipole
moment of

p=qd = (4neoR*)Epi .



(f) Comparing the expression in (e) with with p = aE, we find
a=4regR? .

Interestingly, the polarizability depends only on the radius of our classical atom; the larger
the radius the larger the polarizability, meaning that our classical atom exhibits a larger

response to a given applied field.



Problem 2: Electromagnetism II

(a) Using Biot-Savart Law (in SI units):
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where dl is the differential directed length of the current, and r is the distance from
Using the cylindrical symmetry and

the differential current to the observation point.
integrating along the loop (equivalent to multiplying by by 27 R), we find
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Figure 1: Helmholtz



Figure 2: Anti-Helmholtz

(e) Near z = 0, we have 0B,/0z = nl.

Using Maxwell’s equation
V-B=0B,/0z+ 0B,/0y + 0B, /0x = 0.

By cylindrical symmetry 0B, /0y = 0B, /0x, so 0B, /0x = 0B, /0y = —nl/2.

(f) By Faraday’s Law, the electromotive force along a loop is &€ = ——— where ® is the
magnetic flux through the loop. Here, the loop is a ring of wire of radius r where the field
is nearly constant over the area of the ring. From part (e) B,(t) = Iz = nlyz cos(wot).

The flux through the small loop is ®(z,t) = mr’nlyz cos(wpt). Thus the induced emf
is & = mr’nlywoz sin(wpt), and the current is
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