QUALIFYING EXAMINATION, Part 4

Solutions

Problem 1: Statistical Mechanics I

(a) The one-body distribution for a classical ideal gas with a single-particle Hamiltonian $h = \frac{\mathbf{p}^2}{2m} + V_{\text{trap}}(\mathbf{r})$ is $f(\mathbf{r}, \mathbf{p}) = \mathcal{N} \exp[-\beta \frac{\mathbf{p}^2}{2m} - \beta V_{\text{trap}}(\mathbf{r})]$, where \mathcal{N} is a normalization factor. The density distribution is then $n(r) = \int d^2 \mathbf{p} f(\mathbf{r}, \mathbf{p}) = C e^{-\beta V_{\text{trap}}(r)}$. The prefactor C is such that $2\pi C \int_0^R r dr \ e^{-\frac{\beta}{2}m\omega^2 r^2} = N$. Using the formula in the reminder, we find

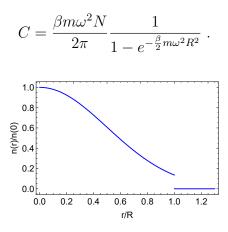


Figure 1: n(r)/n(0) versus r/R.

(b)

$$h_{\text{rot}} = \frac{\mathbf{p}^2}{2m} + V_{\text{trap}}(r) - \mathbf{\Omega} \cdot (\mathbf{r} \times \mathbf{p}) = \frac{\mathbf{p}^2}{2m} + V_{\text{trap}}(r) - \mathbf{p} \cdot (\mathbf{\Omega} \times \mathbf{r})$$
$$= \frac{1}{2m} (\mathbf{p} - m(\mathbf{\Omega} \times \mathbf{r}))^2 - \frac{m}{2} (\mathbf{\Omega} \times \mathbf{r})^2 + V_{\text{trap}}(r) = \frac{1}{2m} (\mathbf{p} - m(\mathbf{\Omega} \times \mathbf{r}))^2 - V_{\text{eff}}(\mathbf{r})$$

Since the particles are confined in a plane orthogonal to Ω , we have $\Omega \times \mathbf{r} = \Omega r$. We thus find that $V_{\text{eff}} = \frac{1}{2}m(\omega^2 - \Omega^2)r^2$ for r < R (and ∞ otherwise). We see that the centrifugal force results in a deconfining radial harmonic potential with frequency Ω .

(c) Following part (a) and replacing h_{lab} by h_{rot} , one finds after integrating the one-body distribution over momenta (at any fixed \mathbf{r} , the term $m\mathbf{\Omega} \times \mathbf{r}$ just shifts \mathbf{p} by a constant) that the equilibrium density is $n_{\Omega}(r) = De^{-\beta V_{\text{eff}}(r)}$. The calculation of D is almost identical to the one for C

$$D = \frac{N}{\pi R^2} \frac{\alpha}{1 - e^{-\alpha}} \; .$$

The resulting density distribution for the three rotation regimes are shown in Fig. 2.

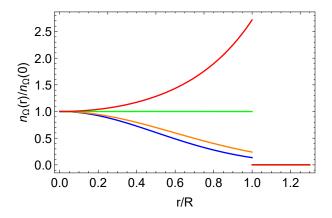


Figure 2: $n_{\Omega}(r)/n_{\Omega}(0)$ for no ($\Omega = 0$, blue, same as Fig.1), slow ($\Omega \ll \omega$, orange), fast ($\Omega = \omega$, green) and ultrafast ($\Omega \gg \omega$, red) rotations.

(d) Following the expression in the reminders, the partition function of the rotating gas is

$$\mathcal{Z} = \frac{1}{h^{2N}N!} \left(\int d^2 \mathbf{r} d^2 \mathbf{p} \exp\left[-\frac{\beta}{2m} \left(\mathbf{p} - m(\mathbf{\Omega} \times \mathbf{r}) \right)^2 - \beta V_{\text{eff}}(\mathbf{r}) \right] \right)^N$$

Carrying out first the integration over momenta, the $\Omega \times \mathbf{r}$ term is just a constant shift, and we find

$$\mathcal{Z} = A(\beta, N) \left(\int d^2 \mathbf{r} \exp\left[-\beta V_{\text{eff}}(\mathbf{r}_i)\right] \right)^N$$

where $A(\beta, N)$ is independent of R. The integration over spatial coordinates is very similar to the calculation of the normalization constants above:

$$\int d^2 \mathbf{r} \exp\left[-\beta V_{\text{eff}}(\mathbf{r}_i)\right] = 2\pi R^2 \int_0^1 u e^{-\alpha u^2} du = 2\pi R^2 \frac{1 - e^{-\alpha}}{2\alpha} \,.$$

Since R^2/α is a constant independent of R, we find

$$\mathcal{Z} = \mathcal{Z}_0 \left(1 - e^{-\alpha} \right)^N ,$$

where \mathcal{Z}_0 is independent of R.

(e) Using the chain rule $\frac{\partial}{\partial R} = \frac{2\alpha}{R} \frac{\partial}{\partial \alpha}$, the force exerted on the disk wall is

$$F = \frac{2\alpha N}{\beta R} \frac{\partial}{\partial \alpha} [\log(1 - e^{-\alpha})] = \frac{2N}{\beta R} \frac{\alpha}{e^{\alpha} - 1} ,$$

and the pressure is

$$P = \frac{N}{\beta \pi R^2} \frac{\alpha}{e^{\alpha} - 1} \,.$$

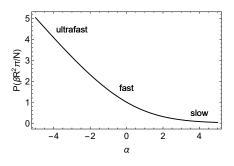


Figure 3: The (dimensionless) pressure per particle $P\frac{\beta \pi R^2}{N}$ versus the rotation parameter α at fixed temperature.

P is sketched in Fig. 3, and its interpretation is straightforward when one notices that the pressure can be simply expressed as a function of the particle density at the walls $P = n_{\Omega}(R)k_{\rm B}T$. This is the form of the ideal gas equation of state with the local density at the walls.

For fast rotation ($\alpha = 0$), we recover the equation of state of an ideal gas with a uniform density $N/(\pi R^2)$. For ultrafast rotation ($\alpha \to -\infty$), $P \approx \frac{N}{2\pi}m\Omega^2$. In this limit, particles are squashed against the walls, and the pressure is the total centrifugal force $m\Omega^2 R \times N$ divided by the total length of the (1D) walls $2\pi R$, independent of the temperature.

Problem 2: Statistical Mechanics II

(a) The spectrum has a symmetry under $\epsilon \to -\epsilon$, i.e. $D(-\epsilon) = D(\epsilon)$. The density of states for positive values of ϵ is obtained from the matching

$$D(\epsilon)d\epsilon = D(\vec{k})d^{2}\vec{k}$$

= $g\left(\frac{L_{x}}{2\pi}\right)\left(\frac{L_{y}}{2\pi}\right)(2\pi k)dk$
= $\frac{A}{\pi}\frac{\epsilon}{\hbar v}\frac{d\epsilon}{\hbar v}.$

Taking into account the symmetry, we obtain the full result

$$D(\epsilon) = \frac{A}{\pi \hbar^2 v^2} |\epsilon|,$$

whose plot looks like the $|\epsilon|$ function.

(b) The Fermi-Dirac distribution states that the probability to find a fermion in a single spin state with energy ϵ is given by

$$n(\epsilon) = \frac{1}{e^{\beta(\epsilon-\mu)}+1}.$$

If we assume that $\mu = 0$, then the probability to find a hole in a single spin state at energy $-\epsilon$ is

$$n_h(-\epsilon) = 1 - n(-\epsilon) = 1 - \frac{1}{e^{\beta(-\epsilon)} + 1} = \frac{e^{\beta(-\epsilon)} + 1 - 1}{e^{\beta(-\epsilon)} + 1} = \frac{1}{e^{\beta\epsilon} + 1} = n(\epsilon).$$

(c) Assuming $\mu = 0$, the number of holes in the valence band is

$$N_h = \int_{-\infty}^0 n_h(\epsilon) D(\epsilon) d\epsilon = \int_0^\infty n_h(-\epsilon) D(-\epsilon) d\epsilon = \int_0^\infty n(\epsilon) D(\epsilon) d\epsilon = N_p.$$

(d) The total internal energy of excitations above the T = 0 state is given by

$$U(T) - U(0) = \int_{-\infty}^{0} (-\epsilon) n_h(\epsilon) D(\epsilon) d\epsilon + \int_{0}^{\infty} \epsilon n(\epsilon) D(\epsilon) d\epsilon$$
$$= 2 \int_{0}^{\infty} \epsilon n(\epsilon) D(\epsilon) d\epsilon = \frac{2A}{\pi \hbar^2 v^2} \int_{0}^{\infty} \frac{\epsilon^2}{e^{\beta\epsilon} + 1} d\epsilon$$
$$= \frac{2A}{\pi \hbar^2 v^2} \int_{0}^{\infty} \frac{(x/\beta)^2}{e^x + 1} \frac{dx}{\beta} = \frac{2A(k_B T)^3}{\pi \hbar^2 v^2} \int_{0}^{\infty} \frac{x^2}{e^x + 1} dx$$

Using the integral given in the problem, we find

$$U(T) - U(0) = \frac{2A(k_B T)^3}{\pi \hbar^2 v^2} 2(1 - 2^{-2})\zeta(3) = \frac{3\zeta(3)A(k_B T)^3}{\pi \hbar^2 v^2} .$$

(e) The heat capacity is

$$C_A(T) = \frac{\partial U(T)}{\partial T} \Big|_A$$

= $\frac{9\zeta(3)Ak_B^3}{\pi\hbar^2 v^2}T^2$,

so the exponent is $\alpha = 2$.