QUALIFYING EXAMINATION, Part 4
Solutions

Problem 1: Statistical Mechanics 1

(a) The one-body distribution for a classical ideal gas with a single-particle Hamiltonian
h = %jtl/;rap(r) is f(r,p) = Nexp[—ﬁ% — BVirap(r)], where AV is a normalization factor.
The density distribution is then n(r) = [ d*p f(r,p) = Ce #Yr(") The prefactor C is

such that 27C fOR rdr e~ 3mr* = N Using the formula in the reminder, we find
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Figure 1: n(r)/n(0) versus r/R.

2 2

p |Y
hrot == % + Vvtrap(r) - Q(I‘ X P) = % + ‘/trap(r> - p(ﬂ X I')
1 m 1
= (- (@ x 1)) = T X0 Vigr) = 5 - (b (2 x 1))° — Vi)

Since the particles are confined in a plane orthogonal to €2, we have € x r = Qr.
We thus find that Vg = sm(w? — Q?)r? for r < R (and oo otherwise). We see that the
centrifugal force results in a deconfining radial harmonic potential with frequency 2.

(c) Following part (a) and replacing hjap by hrot, one finds after integrating the one-body
distribution over momenta (at any fixed r, the term m&2 x r just shifts p by a constant)
that the equilibrium density is ng(r) = De=#Ye1(") The calculation of D is almost identical

to the one for C
N «Q

T AR2l—ea

1



The resulting density distribution for the three rotation regimes are shown in Fig. 2.
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Figure 2: ng(r)/nq(0) for no (2 = 0, blue, same as Fig.1), slow (Q < w, orange), fast
(Q = w, green) and ultrafast (2 > w, red) rotations.

(d) Following the expression in the reminders, the partition function of the rotating gas
18
1 2 2 ﬁ 2 N
Z= 12N NI d“rd°p exp “om (p—m(Qxr))” — BVeg(r) )

Carrying out first the integration over momenta, the €2 X r term is just a constant shift,
and we find

Z=A(B,N) (/ d’r exp [—ﬁVeﬁ(ri)])N :

where A(S, N) is independent of R. The integration over spatial coordinates is very
similar to the calculation of the normalization constants above:
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Since R?*/« is a constant independent of R, we find
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where Z; is independent of R.

(e) Using the chain rule % = %8%, the force exerted on the disk wall is
2aN 0 2N «
= ——_—|log(l—e )] = —-=
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and the pressure is
N a
~ prR?ec —1



ultrafast

P(BR?1T/N)
N

-

-4 -2 0 2 4

Figure 3: The (dimensionless) pressure per particle PB”TRQ versus the rotation parameter
« at fixed temperature.

P is sketched in Fig. 3, and its interpretation is straightforward when one notices that
the pressure can be simply expressed as a function of the particle density at the walls
P =nq(R)kgT. This is the form of the ideal gas equation of state with the local density
at the walls.

For fast rotation (a = 0), we recover the equation of state of an ideal gas with a uniform
density N/(mR?). For ultrafast rotation (o — —00), P ~ ££mQ?. In this limit, particles
are squashed against the walls, and the pressure is the total centrifugal force mQ?R x N
divided by the total length of the (1D) walls 27 R, independent of the temperature.

Problem 2: Statistical Mechanics 11

(a) The spectrum has a symmetry under ¢ — —¢, i.e. D(—¢) = D(€). The density of
states for positive values of € is obtained from the matching

D(e)de = D(k)d’k

L.\ (L,
A e de

7w hv ho

Taking into account the symmetry, we obtain the full result
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whose plot looks like the |e| function.

(b) The Fermi-Dirac distribution states that the probability to find a fermion in a single
spin state with energy e is given by

n(e) = ——
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If we assume that u = 0, then the probability to find a hole in a single spin state at
energy —e is
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np(—€) = 1—n(—e)=1- = n(e).

(¢) Assuming p = 0, the number of holes in the valence band is

Ni= [ miapac= [“mi-apt-ade= [ n@piic=x,

—0o0

(d) The total internal energy of excitations above the T" = 0 state is given by

U(T) = U(0) = [°_(—e)nn(e)D(e)de + foooen )D(€)de

= 2fooo en(e)D(e)de = W fo 5€+1
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Using the integral given in the problem, we find
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(e) The heat capacity is
ou(T)
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so the exponent is a = 2.



