
QUALIFYING EXAMINATION, Part 4

Solutions

Problem 1: Statistical Mechanics I

(a) The one-body distribution for a classical ideal gas with a single-particle Hamiltonian

h = p2

2m
+Vtrap(r) is f(r,p) = N exp[−β p2

2m
−βVtrap(r)], where N is a normalization factor.

The density distribution is then n(r) =
∫

d2p f(r,p) = Ce−βVtrap(r). The prefactor C is

such that 2πC
∫ R

0
rdr e−

β
2
mω2r2

= N . Using the formula in the reminder, we find

C =
βmω2N

2π

1

1− e−β2mω2R2
.
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Figure 1: n(r)/n(0) versus r/R.

(b)

hrot =
p2

2m
+ Vtrap(r)−Ω·(r× p) =

p2

2m
+ Vtrap(r)− p·(Ω× r)

=
1

2m
(p−m(Ω× r))2 − m

2
(Ω× r)2 + Vtrap(r) =

1

2m
(p−m(Ω× r))2 − Veff(r)

Since the particles are confined in a plane orthogonal to Ω, we have Ω × r = Ωr.
We thus find that Veff = 1

2
m(ω2 − Ω2)r2 for r < R (and ∞ otherwise). We see that the

centrifugal force results in a deconfining radial harmonic potential with frequency Ω.

(c) Following part (a) and replacing hlab by hrot, one finds after integrating the one-body
distribution over momenta (at any fixed r, the term mΩ× r just shifts p by a constant)
that the equilibrium density is nΩ(r) = De−βVeff(r). The calculation ofD is almost identical
to the one for C

D =
N

πR2

α

1− e−α
.
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The resulting density distribution for the three rotation regimes are shown in Fig. 2.
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Figure 2: nΩ(r)/nΩ(0) for no (Ω = 0, blue, same as Fig.1), slow (Ω � ω, orange), fast
(Ω = ω, green) and ultrafast (Ω� ω, red) rotations.

(d) Following the expression in the reminders, the partition function of the rotating gas
is

Z =
1

h2NN !

(∫
d2rd2p exp

[
− β

2m
(p−m(Ω× r))2 − βVeff(r)

])N
.

Carrying out first the integration over momenta, the Ω× r term is just a constant shift,
and we find

Z = A(β,N)

(∫
d2r exp [−βVeff(ri)]

)N
.

where A(β,N) is independent of R. The integration over spatial coordinates is very
similar to the calculation of the normalization constants above:

∫
d2r exp [−βVeff(ri)] = 2πR2

∫ 1

0

ue−αu
2

du = 2πR2 1− e−α

2α
.

Since R2/α is a constant independent of R, we find

Z = Z0

(
1− e−α

)N
,

where Z0 is independent of R.

(e) Using the chain rule ∂
∂R

= 2α
R

∂
∂α

, the force exerted on the disk wall is

F =
2αN

βR

∂

∂α
[log(1− e−α)] =

2N

βR

α

eα − 1
,

and the pressure is

P =
N

βπR2

α

eα − 1
.
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Figure 3: The (dimensionless) pressure per particle P βπR2

N
versus the rotation parameter

α at fixed temperature.

P is sketched in Fig. 3, and its interpretation is straightforward when one notices that
the pressure can be simply expressed as a function of the particle density at the walls
P = nΩ(R)kBT . This is the form of the ideal gas equation of state with the local density
at the walls.

For fast rotation (α = 0), we recover the equation of state of an ideal gas with a uniform
density N/(πR2). For ultrafast rotation (α→ −∞), P ≈ N

2π
mΩ2. In this limit, particles

are squashed against the walls, and the pressure is the total centrifugal force mΩ2R×N
divided by the total length of the (1D) walls 2πR, independent of the temperature.

Problem 2: Statistical Mechanics II

(a) The spectrum has a symmetry under ε → −ε, i.e. D(−ε) = D(ε). The density of
states for positive values of ε is obtained from the matching

D(ε)dε = D(~k)d2~k

= g

(
Lx
2π

)(
Ly
2π

)
(2πk)dk

=
A

π

ε

h̄v

dε

h̄v
.

Taking into account the symmetry, we obtain the full result

D(ε) =
A

πh̄2v2
|ε|,

whose plot looks like the |ε| function.

(b) The Fermi-Dirac distribution states that the probability to find a fermion in a single
spin state with energy ε is given by

n(ε) =
1

eβ(ε−µ) + 1
.
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If we assume that µ = 0, then the probability to find a hole in a single spin state at
energy −ε is

nh(−ε) = 1− n(−ε) = 1− 1

eβ(−ε) + 1
=
eβ(−ε) + 1− 1

eβ(−ε) + 1
=

1

eβε + 1
= n(ε).

(c) Assuming µ = 0, the number of holes in the valence band is

Nh =

∫ 0

−∞
nh(ε)D(ε)dε =

∫ ∞
0

nh(−ε)D(−ε)dε =

∫ ∞
0

n(ε)D(ε)dε = Np.

(d) The total internal energy of excitations above the T = 0 state is given by

U(T )− U(0) =
∫ 0

−∞(−ε)nh(ε)D(ε)dε+
∫∞

0
εn(ε)D(ε)dε

= 2
∫∞

0
εn(ε)D(ε)dε = 2A

πh̄2v2

∫∞
0

ε2

eβε+1
dε

= 2A
πh̄2v2

∫∞
0

(x/β)2

ex+1
dx
β

= 2A(kBT )3

πh̄2v2

∫∞
0

x2

ex+1
dx

Using the integral given in the problem, we find

U(T )− U(0) =
2A(kBT )3

πh̄2v2
2(1− 2−2)ζ(3) =

3ζ(3)A(kBT )3

πh̄2v2
.

(e) The heat capacity is

CA(T ) =
∂U(T )

∂T

∣∣∣∣
A

=
9ζ(3)Ak3

B

πh̄2v2
T 2,

so the exponent is α = 2.
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