
QUALIFYING EXAMINATION, Part 1

1:00 PM – 4:00 PM, Thursday September 1, 2011

Attempt all parts of all four problems.

Please begin your answer to each problem on a separate sheet, write your 3 digit code
and the problem number on each sheet, and then number and staple together the sheets
for each problem. Each problem is worth 100 points; partial credit will be given.

Calculators may NOT be used.
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Problem 1: Mathematical Methods

Consider the following differential equation for the function y = y(x)

x
d2y

dx2
− x

dy

dx
− y = 0 .

(a) How many linearly independent solutions do you expect? (15 points)

(b) Look for solutions of the form

y(x) =
∞∑

n=0

xn+scn ,

where s is a real number and cn are constants. Find the allowed values for s. By summing
the series for the largest value of s, show that one solution is given by y1 = c0xex. (40
points)

Note: other values of s do not lead to a new solution (you do not have to show that).

(c) Find another solution of the form y2(x) = y1(x)F (x). Express F in terms of an
indefinite integral that cannot be evaluated in closed form. However, show that for small
x

y2(x) = cex

(
1 + x ln x− x2

2
+

x3

12
+O(x4)

)
,

where c is a constant. (45 points)
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Problem 2: Classical Mechanics

A mass M is connected on each side by a massless spring, each of spring constant k
(see figure), and it executes small oscillations along the x-axis. At equilibrium the springs
are unstretched at length L.

M
k k

x
L L

(a) For motion along the x-axis, determine the Lagrangian L of the system. Compute the
Euler-Lagrange equation for x and find the angular frequency ω for the oscillation. (30
points)

(b) Assume the springs are stretched by an amount S at equilibrium (see second figure)
and allow the mass M to execute small oscillations along both the x and y axes (the y-axis
is perpendicular to the springs). Find the potential energy V (x, y) − V (0, 0) to second
order in x and y, and compute the normal frequencies and normal modes. (40 points)

Hint: use x, y ¿ L + S ≡ λ and the expansion
√

1 + ξ = 1 + 1
2
ξ − 1

8
ξ2 + . . . (for ξ ¿ 1).

Feel free to use general arguments regarding linear terms in the potential.

k k

L+S

M

y

x

L+S

(c) Assume the mass in (b) undergoes circular motion with a small radius ρ in the y − z
plane perpendicular to the x axis (i.e., the x = 0 plane) (see third figure). Use Newton’s
law to determine the rotation frequency ω around the x−axis. Use your results in (b)
to argue that such circular motion is indeed a solution to the equations of motion in the
limit of small oscillations and to determine the frequency ω. (30 points)
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Problem 3: Electromagnetism I

A block of a semiconductor (see figure) with conductivity σ is attached with its bottom
face (z = 0) to a metal plate, which is held at zero potential (Φplate = 0). Assume that
the component of the electric field perpendicular to each of the vertical sides of the block
(x = 0, x = a, y = 0, y = b) vanishes. A boundary condition similar to that of the sides
is imposed at the top face, except for a point at its center where a thin wire carrying a
current I is attached. The charge density inside the block is ρ = 0, and assume ε = µ = 1.

y

Φ=0

c

a

b

z

x

I

(a) Write down the general solution for the electric potential Φ inside the block. (25 points)

(b) Employ the boundary conditions for the vertical sides (x = 0, x = a, y = 0, y = b) to
constrain parameters of the general solution. (25 points)

(c) Use the boundary condition for the bottom plate (at z = 0) to constrain further the
parameters. Write down the solution after steps (b) and (c). (25 points)

(d) Without doing the explicit calculation, explain how you could use the boundary
condition for the top face (z = c) to determine the final solution. (25 points)

Hint: use Ohm’s law Ez = I/σ at the point contact and model the contact of the wire by
δ functions in x and y. Thus ∂Φ/∂z|z=c = − I

σ
δ
(
x− a

2

)
δ
(
y − b

2

)
.
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Problem 4: Electromagnetism II

An amount of charge Q is distributed uniformly over the surface of a spherical in-
sulator of radius a. The sphere is then made to rotate about an axis (the z-axis) with
constant angular frequency ω.

(a) Give an expression for the surface charge density σ and the surface current density ~K
on the surface of the sphere. (15 points)

(b) Calculate the electric field both inside and outside the sphere. (15 points)

(c) Calculate the magnetic moment ~µ of the system. (20 points)

Hint: the magnetic moment of a circular ring carrying a current is proportional to the
current times its area.

(d) The magnetic field produced by this configuration is uniform along the z-axis inside
the sphere (r < a) and dipolar outside the sphere (r > a). Find the exact expressions of
~B for r < a and r > a in terms of the parameters Q, a, ω. (40 points)

Hints: express ~B in terms magnetic scalar potentials ΦM , ~B = −~∇ΦM in the regions
r < a and r > a. Use the fact that the magnetic field is uniform along the z-axis inside
the sphere and dipolar outside the sphere (i.e., ΦM ∝ cos θ/r2 for r > a), and apply the

boundary conditions for ~B across r = a to determine the proportionality constants in the
above expressions for ΦM .

The gradient in spherical coordinates is given by

~∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
.

(e) Now suppose that the angular velocity is changing as a function of time at a rate of
ω̇. Use Faraday’s law to find the azimuthal electric field Eφ induced on the surface of the
sphere at angle θ by the time-dependent magnetic flux. (10 points)
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AND d FUNCTIONS
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QUALIFYING EXAMINATION, Part 2

9:00 AM – noon, Friday September 2, 2011

Attempt all parts of all four problems.

Please begin your answer to each problem on a separate sheet, write your 3 digit code
and the problem number on each sheet, and then number and staple together the sheets
for each problem. Each problem is worth 100 points; partial credit will be given.

Calculators may NOT be used.
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Problem 1: Quantum Mechanics I

This problem is sometimes referred to as a bound-state Aharanov-Bohm effect.

An electron of charge e is confined to a ring of radius R in the x − y plane centered
around the z-axis. A constant magnetic field ~B, pointing in the ẑ direction, is confined
to an infinitely long cylinder whose axis is the z-axis and whose radius is R0 < R. Thus
~B = Bẑ for ρ ≤ R0, and ~B = 0 for ρ > R0, where ρ2 = x2 + y2.

(a) Using Stokes’ theorem along the ring of radius R, find the simplest form for the vector

potential ~A on the ring. Take ~A to point along the ring and be constant in magnitude
(i.e., cylindrically symmetric). (20 points)

(b) Write down the quantum-mechanical Hamiltonian for an electron with canonical mo-

mentum ~p (neglecting its spin) in the presence an electromagnetic vector potential ~A.

Use the principle of minimal coupling substitution ~p → ~p− e
c
~A (where ~p is the canonical

momentum). (15 points)

(c) Making use of the Hamiltonian in (b), determine the allowed bound-state energies of
the electron confined to the ring. What are the corresponding eigenfunctions in terms of
the angular displacement ϕ along the ring ? (35 points)

(d) Now suppose that there is also a weak, uniform electric field acting on the electron,

pointing in the x̂ direction: ~E = Ex̂. What is the form of the interaction potential V in
terms of the angular displacement ϕ ? What is the energy shift of each level to lowest
order in perturbation theory? Assume that (e/c)(R2

0B/2?) is not an integral multiple of
1/2. (30 points)
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Problem 2: Quantum Mechanics II

• Two identical non-relativistic particles of mass m are confined to one dimension (the
x axis). Each particle moves in a harmonic trapping potential V (x) = 1

2
kx2 where k > 0.

The coordinate operator of a harmonic oscillator can be written in terms of raising and
lower operators as x̂ =

√
~/(2mω)(â + â†) where ω =

√
k/m.

(a) If the two particles are spinless non-interacting bosons, find the ground-state energy
E0 and first excited state energy E1 of the system. (15 points)

(b) Solve part (a) for spinless non-interacting fermions. (15 points)

(c) Assume the two particles are non-interacting spin-1/2 electrons. What are E0 and E1

and their degeneracies? (25 points)

• For the remainder of this problem, consider an additional attractive interaction
which is added to the system Hamiltonian

Vint(x1, x2) = −αkx1x2 ,

where x1 and x2 are the particle coordinates and α is a dimensionless parameter 0 < α < 1
(parts (a)-(c) had α = 0).

(d) For spinless bosons, find the correction to E0 to lowest non-vanishing order in α. (25
points)

(e) Find exact, closed-form expressions (i.e., no approximations or series) for E0(α) and
E1(α) for spinless bosons.

Hint: transform x1, x2 to normal coordinates. (20 points)
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Problem 3: Statistical Mechanics I

In 1907, Einstein, in the first application of quantum theory to a problem other than
radiation, modeled a solid body containing N atoms as a collection of 3N harmonic oscil-
lators (each such atom can vibrate in three directions). This is known as Einstein’s model
of a solid. For simplicity, he assumed that all these oscillators have the same frequency ω
and their coupling can be ignored.

(a) Calculate in closed form the canonical partition function Z for a single oscillator at
temperature T . (25 points)

(b) Use your result in (a) to calculate the average energy of a single oscillator at temper-
ature T and then determine the internal energy U of the entire solid. (25 points)

(c) Find the heat capacity CV ≡ ∂U
∂T

of this solid. (20 points)

(d) Sketch CV as a function of T . Determine the behavior of CV in the limits kT ¿ ~ω
and kT À ~ω and explain their physical meaning. Argue that the high temperature limit
is valid even when the N oscillators do not have the same frequency. (30 points)
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Problem 4: Statistical Mechanics II

Consider a two-dimensional gas of N non-relativistic fermions with mass m and spin
s moving in a square of area A.

(a) Find the density of single-particle states g(ε) at energy ε. (20 points)

(b) Evaluate the Fermi energy εF of the gas as a function of the density of particles
ρ = N/A. (20 points)

(c) Calculate the total energy of the gas per particle E/A at temperature T = 0 as a
function of its density. (20 points)

(d) Using your result in (c), determine the pressure of the gas P at T = 0 as a function
of its density. (15 points)

(e) A container is separated into two compartments by a sliding piston. Two two-
dimensional Fermi gases with spin 1/2 and 3/2 but the same mass are placed in the
left and right compartments, respectively. Find the ratio between the densities of the two
gases at equilibrium at T = 0. (25 points)

Hint: use your result in (d).
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AND d FUNCTIONS

Note: A square-root sign is to be understood ovet elter|cocfficicnt, e.g., for -8/15 read -JW'
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