
QUALIFYING EXAMINATION, Part 1

9:00 am – 11:30 am, Thursday August 30, 2018

Attempt all parts of both problems.

Please begin your answer to each problem on a separate sheet, write your 3 digit code
and the problem number on each sheet, and then number and staple together the sheets
for each problem. Each problem is worth 100 points; partial credit will be given.

Calculators and cell phones may NOT be used.
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Problem 1: Classical Mechanics I

Consider the V-shaped object in the figure below of mass M and two uniform rods
of length l, with a fixed opening angle α. The object is supported at the pivot P and is
subjected to a gravitational field ~g.
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a = q1+ q2

(a) (15 points) Compute I, the moment of inertia of the object about an axis through P
that is perpendicular to the plane of the rods.

In the following use the angle δ = θ1 − α
2

as generalized coordinate.

(b) (10 points) Find the kinetic energy T .

(c) (30 points) Find the gravitational potential energy V (with the heights measured from
the pivot P ).

(d) (5 points) Write down the Lagrangian L.

(e) (25 points) Find the equation of motion for δ.

(f) (15 points) Find the frequency of small oscillations in terms of M , l, and α.

Useful formulas:
sin(A±B) = sinA cosB ± cosA sinB

cos(A±B) = cosA cosB ∓ sinA sinB
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Problem 2: Classical Mechanics II

~g

r θ 

α 

A particle of mass m is constrained to move along the
surface of a cone with half opening angle α, under the influ-
ence of gravity. The cone is oriented with its apex pointing
down, and its symmetry axis along the direction of gravity
~g.

(a) (20 points) Find the Lagrangian of the particle using (r,θ)
as generalized coordinates, where r denotes the perpendicu-
lar distance from the cone axis to the particle, and θ is the
azimuthal angle (see figure).

Hint: choose a cartesian coordinate system whose origin is the apex of the cone and whose
z axis is the symmetry axis of the cone, and write the transformation equations expressing
x, y, z in terms of r, θ. Alternatively, you can start with the general expression for T in
cylindrical coordinates and restrict to the cone.

(b) (20 points) Calculate the generalized momenta, pr and pθ that are conjugate to the
coordinates r and θ, respectively. Write down the Hamiltonian H(r, θ, pr, pθ) in terms of
the coordinates and conjugate momenta.

(c) (15 points) Using the Hamiltonian from part (b), find the four corresponding Hamil-
ton’s equations of motion for ṙ, θ̇, ṗr, and ṗθ.

(d) (15 points) Determine which, if any, of the following quantities are conserved: pr,
pθ, and H. Explain why the conservation follows from the form of the Hamiltonian, and
provide a physical interpretation of any conserved quantities.

(e) (15 points) The particle can undergo motion along stable circular orbits around the
cone. For an orbit with constant radius r = r0, use the equations of motion from part
(c) to find the corresponding value of pθ (denote this value as L0). Determine the corre-
sponding angular frequency ω0 of the circular orbit in terms of r0, g, and α.

(f) (15 points) Assume the particle is perturbed slightly from the circular orbit in part
(e), so that r = r0 + δr with δr � r0. Find the frequency of small oscillations, ω, around
r0 for the perturbed orbit in terms of r0, g, and α.

Hint: First find the equation of motion for r̈ for a given value of L0, using either the
results of parts (b) and (c), or directly from the Lagrangian in part (a). You can use the

approximation 1
(r0+δr)3

≈ 1
r30

(
1 − 3 δr

r0

)
, and the value of L0 found in (e) to simplify the

equation of motion.
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QUALIFYING EXAMINATION, Part 2

2:00 pm – 4:30 pm, Thursday August 30, 2018

Attempt all parts of both problems.

Please begin your answer to each problem on a separate sheet, write your 3 digit code
and the problem number on each sheet, and then number and staple together the sheets
for each problem. Each problem is worth 100 points; partial credit will be given.

Calculators and cell phones may NOT be used.

1



Problem 1: Electromagnetism I

A conducting spherical shell of radius a is split into two hemispheres, separated by an
infinitesimally thin insulating layer. The upper hemisphere is maintained at a potential
V , while the lower hemisphere is maintained at a potential −V .

(a) (15 points) What is the leading order radial dependence of the potential at r � a?
Explain your reasoning. You do not need to determine the angular dependence or the
proportionality constant for this part. Note that the total charge on the sphere (i.e., the
sum of the charge of both hemispheres) is 0 by symmetry.

(b) (30 points) Find the potential V (r, θ) outside the shell (r > a). Make sure to explicitly
specify which, if any, of the expansion coefficients Al or Bl (see the general expression
for V in the hint below) are zero. Determine the expansion only up to the lowest two
non-zero terms; do not calculate the coefficients of the higher order terms.

(c) (15 points) Now consider the potential V (r, θ) inside the shell (r < a). Relate the
coefficients Al and Bl inside the shell to the coefficients Al and Bl outside the shell.

(d) (20 points) Determine the potential V (r, θ) inside the shell (r < a). Calculate only
the lowest two non-zero terms in the expansion.

(e) (20 points) Calculate the net surface charge density σ(θ) on the shell up to the lowest
two non-zero terms.

Hints: The general solutions of Laplace’s equation with azimuthal symmetry in spherical
coordinates (where the z axis is taken to be the symmetry axis) is

V (r, θ) =
∞∑
l=0

(
Alr

l +
Bl

rl+1

)
Pl(cos θ) ,

where Pl are Legendre polynomials and Al, Bl are constants.

You may find the following properties of the Legendre polynomials useful∫ 1

−1
dxPl(x)Pm(x) =

2

2l + 1
δlm

Pl(−x) = (−1)lPl(x)∫ 1

0

dxP0(x) = 1 ,

∫ 1

0

dxP1(x) = 1/2 ,

∫ 1

0

dxP2(x) = 0 ,

∫ 1

0

dxP3(x) = −1/8 .

2



Problem 2: Electromagnetism II

A capacitor consists of a pair of parallel circular perfectly conducting plates both of
radius a. The lower plate lies on the plane z = 0, while the second plate is at z = d� a
so that edge effects can be ignored. Both plates are centered on the z-axis.

The lower plate has a uniform time-dependent surface charge σ(t) = σ0 cosωt. In the
following assume the quasi-static approximation, aω/c � 1, in which retardation effects
are neglected.

(a) (15 points) Calculate the time-dependent electric field E between the plates.

(b) (25 points) Calculate the magnetic field B induced by the displacement current of the
electric field in part (a). The displacement current is given by Jd = ε0

∂E
∂t

(SI units) or
Jd = 1

4π
∂E
∂t

(Gaussian units).

(c) (15 points) Compute the Poynting vector S and the energy flux through a cylindrical
surface x2 + y2 = r2 (r < a) that lies inside the capacitor between z = 0 and z = d.

The Poynting vector is given by S = 1
µ0

(E×B) (SI units), or S = c
4π

(E×B) (Gaussian

units), where c is the speed of light.

(d) (25 points) Calculate the rate of change of electromagnetic energy in the volume en-
closed by the cylindrical surface in (c). Consider only the term that is first order in ω.
Compare your result with the energy flux you found in (c).

(e) (20 points) The induced magnetic field in (b) generates an additional induced electric
field Eind(r) = Eind(r) ẑ which is second order in ω. Calculate Eind(r) − Eind(r = 0).

Hint: consider the rectangular Faraday’s loop with sides d and dr shown in the figure.
The figure shows a cross section of the system using a plane perpendicular to the plates
that goes through their center.

r
dr

z

d

a
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QUALIFYING EXAMINATION, Part 3

9:00 am – 11:30 am, Friday August 31, 2018

Attempt all parts of both problems.

Please begin your answer to each problem on a separate sheet, write your 3 digit code
and the problem number on each sheet, and then number and staple together the sheets
for each problem. Each problem is worth 100 points; partial credit will be given.

Calculators and cell phones may NOT be used.
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Problem 1: Quantum Mechanics I

Consider a non-relativistic particle of mass m moving in one dimension along the x
axis in a potential V (x). The particle is described by normalized wave function ψ(x, t)
that satisfies the time-dependent Schrödinger equation.

(a) (30 points) The Schrödinger equation conserves global probability so that
∫∞
−∞ dx |ψ(x, t)|2

remains constant for all times t. However, it also preserves probability locally. The prob-
ability current is defined by

J(x, t) =
i~
2m

(
ψ
∂ψ∗

∂x
− ψ∗∂ψ

∂x

)
,

and we denote the probability to find the particle in the interval a < x < b at time t by
Pab(t). Derive an expression for dPab/dt in terms of the probability current J(x, t) at the
two end points x = a and x = b.

(b) (25 points) Now consider the following wave function

ψ(x, t) = A exp(−c|x| − iEt/~) ,

where A > 0, c > 0 and E are constants. Determine A. Then find the expectation values
〈x̂〉(t) and 〈x̂2〉(t).
Hint: ∫ ∞

0

du un exp(−u) = n! for n > −1 .

(c) (25 points) For an arbitrary Hermitian observable Ô that does not depend explicitly
on time, determine the expectation value 〈Ô〉(t) of Ô at time t in terms of its expectation
value at time t = 0 for the wave function of part (b). Explain briefly why the result looks
the way it does.

(d) (20 points) Using the Schrödinger equation, find the potential V (x) appropriate for
the wave function ψ(x, t) of part (b). Assume that V (x)→ 0 as x→ ±∞.

Hint: consider first the Schrödinger equation for x > 0 and x < 0 and determine the po-
tential for x 6= 0. Next, integrate the Schrödinger equation in a narrow interval−ε < x < ε
around x = 0 and use the explicit form of the wave function in (b).
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Problem 2: Quantum Mechanics II

The Stark Effect in atomic hydrogen is the shift in energies when the atom is placed
in an external, uniform electric field. With the electric field pointed in the z direction,
the perturbing potential is

V = −eεz ,

where ε is the strength of the electric field, and where the proton is situated at the origin.

(a) (15 points) Neglecting the spin of the electron, the unperturbed bound-state energy of
the hydrogen atom depends on only the principal quantum number n. For the n = 2 level,
how many degenerate states exist? Label them by the orbital angular momentum l = 0
(2s states) and l = 1 (2p states), with the associated values of the magnetic quantum
number ml in each case.

(b) (25 points) Apply degenerate perturbation theory to the states in (a) to determine the
energy shifts to first (linear) order in ε. To identify the non-vanishing matrix elements of
V , take into account the parity properties of the unperturbed states and of V . Also take
into account the fact that since the potential is the zero component of a spherical tensor
of rank one, it can connect only states with the same value of ml.

Useful matrix element: 〈2s|V |2p,ml = 0〉 = 3eεa0, where a0 is the Bohr radius.

(c) (20 points) What are the zeroth-order states that correspond to the shifted energies
you found in (b)? Express them as linear combinations of 2s and 2p states labeled with
appropriate values of ml.

Next take into account the spin of the electron. The degenerate, unperturbed states
can be denoted by 2pj=3/2, 2pj=1/2, and 2sj=1/2, along with their appropriate mj values.
The spin-orbit splitting lifts the 2p3/2 states above the other states (2p1/2 and 2sj=1/2).
Assume that eεa0 is much smaller than the spin-orbit splitting. Thus the 2p3/2 states
can be ignored here. The remaining degeneracy between the 2p1/2 and 2s1/2 states is also
broken, by the much smaller Lamb shift, which splits these states by a small energy δ.
Examine the Stark shift among the 2s1/2 states and the 2p1/2 states.

(d) (20 points) First consider the limit eεa0 � δ. Which are the non-vanishing matrix
elements of V among the 2s1/2 and 2p1/2 states? Here, the tensor property of V , as de-
scribed in part (b), insures that it can connect only states with the same value of mj.
How does the Stark shift depend on ε in this limit?

(e) (20 points) In the opposite limit eεa0 � δ, how does the Stark shift of each of the two
degenerate levels, 2s1/2 and 2p1/2, depend on ε? Why? Can this behavior be determined
by non-degenerate perturbation theory?
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QUALIFYING EXAMINATION, Part 4

2:00 pm – 4:30 pm, Friday August 31, 2018

Attempt all parts of both problems.

Please begin your answer to each problem on a separate sheet, write your 3 digit code
and the problem number on each sheet, and then number and staple together the sheets
for each problem. Each problem is worth 100 points; partial credit will be given.

Calculators and cell phones may NOT be used.
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Problem 1: Statistical Mechanics I

Consider a classical non-relativistic gas of N non-interacting identical particles with
mass m moving in one dimension, constrained by a wall at x = a to move in the x ≥ a
region and subject to the potential

V (x) = bx for x ≥ a ,

where b > 0. The gas is in equilibrium at uniform temperature T .

(a) (35 points) Compute the partition function Z and the free energy F of the gas.

Hint: the classical partition function z for a single particle is given by

z =

∫
dx dp

2π~
e−βE(p,x) ,

where β = 1
kBT

and E(x, p) is the energy of the particle.

Useful formula: ∫ ∞
−∞

e−λx
2

dx =

√
π

λ

(b) (25 points) Use the free energy you found in (a) to determine the force f that the gas
exerts on the wall.

Hint: consider the work done by the gas at constant temperature T when the wall is
moved by a small distance da.

(c) (25 points) Find the density of particles n(x) as a function of x for x ≥ a.

(d) (15 points) Express the force f you found in (b) in terms of n(x = a) and T . Would
the relation between f and n(a) change if the confining potential has a different form?
Justify or provide a derivation of your answer.
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Problem 2: Statistical Mechanics II

Consider a one-dimensional gas of N non-interacting identical non-relativistic fermions
of mass m confined in a harmonic trap potential V (x) = 1

2
mω2x2, where ω is the trap fre-

quency. The gas is in equilibrium at temperature T . For simplicity, assume a single-spin
species, i.e., ignore the spin degeneracy of each level.

(a) (15 points) Find the Fermi energy εF of the gas at T = 0 as a function of N .

(b) (25 points) (i) Calculate the exact total energy per particle E/N at T = 0.

Useful formula:
N−1∑
n=0

n =
N(N − 1)

2
.

(ii) Determine the average single-particle density of states in the harmonic trap, and use
it to calculate the average total energy per particle. Compare with your result in (i).

(c) (20 points) Write down an expression for the grand potential Ω(µ, T ) = −kBT lnZGC,
where kB is the Boltzmann constant, ZGC is the grand-canonical partition function of the
gas and µ is the chemical potential. Do not attempt to evaluate the infinite sum.

(d) (20 points) Use your result in (c) to derive the equation of state (EoS) of the gas,
i.e., find the function N̄(µ, T ), where N̄ is the average total number of particles. Do not
attempt to evaluate the infinite sum.

(e) (20 points) (i) Calculate the EoS you found in (d) in the limit of high T (kT � ~ω)
and z � 1, where z = eβµ is the fugacity of the gas. Evaluate explicitly the infinite sum.

(ii) What does the limit in (i) describe?
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