Staff

NPA Seminar: Nickolas Kokron, Princeton, "Probing the S(igma)-8 tension at the onset of stage-IV cosmic surveys"

In 1970, Allan Sandage famously described Cosmology as “A search for two numbers”. In the half-century since that description of the field was penned, as Stage III cosmic surveys come to an end and Stage-IV surveys begin taking data, the field finds itself having measured the six parameters of the concordance ΛCDM model at nearly 1% precision. However, different experiments now report different values for two of these parameters – namely the Hubble Constant and the variance of dark matter density fluctuations, S(igma) 8 – at varying levels of significance.

NPA Seminar: Adriaan Duivenvoorden, Flatiron Institute; Simons Foundation, "Cosmology from the fine details of the microwave sky with the Atacama Cosmology Telescope and the Simons Observatory"

Modern ground-based microwave observatories offer a high-resolution perspective on the cosmic microwave background (CMB) and its secondary components, complementing galaxy surveys and the low resolution CMB data from the Planck and WMAP satellites. In this talk, I will introduce two such observatories, the Atacama Cosmology Telescope (ACT) and the Simons Observatory. The ACT collaboration is preparing to release its sixth public data release. This release, DR6, is the result from a 6-year-long survey covering 40% of the sky at arcminute resolution.

NPA Seminar: Deepa Thomas, The University of Texas at Austin, "Probing hot QCD matter with charm and beauty quarks"

Ultra-relativistic heavy-ion collisions produce a hot and dense QCD matter, called Quark-Gluon Plasma (QGP). Unlike in ordinary matter, quarks and gluons are not confined within short distances but can roam freely over distances larger than the hadronic scale in the state of QGP. Understanding this novel state of matter offers a new way to learn how quarks and gluons bind to form stable particles like the proton.

NPA Seminar: Bryan Ramson, Fermilab, "The New Era of Precision Neutrino Physics"

Long-baseline neutrino oscillation experiments present some of the most compelling paths toward physics beyond the standard model. Measurement of the leptonic mixing matrix through oscillation and observation of the degree of leptonic CP violation demonstrates a proof of concept for understanding the difference between matter and anti-matter in the observable universe. State of the art experiments like NOvA and T2K are currently performing measurements of neutrino oscillation, but ultimately, will be statistically limited.

NPA Seminar: Stephen Kuenstner, Boston University, "Sensitive Searches for Axion Dark Matter with Solid-State Spin Ensembles"

In this talk, I’ll describe how we use solid-state spin ensembles, magnetic resonance, and quantum sensing techniques to search for axion dark matter in the third-generation CASPEr-e detector. Discovering and characterizing axion dark matter could resolve the longstanding Strong CP Problem, in addition to revealing the identity of dark matter. The Strong CP Problem stems from the puzzling lack of a CP-violating permanent electric dipole moment (EDM) in nucleons.

NPA Seminar: Renee Ludlam, Wayne State University, "Characterizing the Properties of Accreting Neutron Stars through X-ray Observations"

The matter inside of a neutron star (NS) exists in an ultra-dense, cold state that we are unable to reproduce in Earth-based laboratories. Hence the only way to understand how matter behaves in this environment, i.e. determining the Equation of State (EoS), is through observations of these objects. NSs in low-mass X-ray binaries, where matter is stripped from a stellar companion to form an accretion disk, provide a unique opportunity to learn more about accretion physics and properties of the compact object itself.

NPA Seminar: Kyle Leach, Colorado School of Mines, "A Tale of Two Symmetries: Examining the PMNS and CKM Matrices via Weak Nuclear Decay"

It was the best of times, it was the worst of times. Just as the classic English novel lends its title well to the spirit of understanding symmetries in the standard model (SM), the opening words also concisely sum up the status of beyond standard model (BSM) physics searches through tests of the fundamental symmetric matrices over the past few decades. Despite the identical mathematical formalism that generates these matrices in the SM, empirically the level of observed mixing within these two are dramatically different.

Spring 2024 EHS Orientation for Wright Lab Shops

Wright Lab will host two, identical 1-hour Environmental Health and Safety (EHS) Shop Orientations on Friday, January 26 at 11:30 a.m. and Tuesday, January 30 at 3:00 p.m. The EHS shop orientation is offered each semester and is required to be taken once by anyone who would like to gain access and make use of the research and teaching shops at Wright Lab.

For more information on the shop facilities at Wright Lab see:
https://wlab.yale.edu/facilities

NPA Seminar: Yeonju Go, BNL, "Jets and medium response in relativistic heavy ion collisions: Probing quark-gluon plasma"

Quark-gluon plasma (QGP), a unique phase of matter governed by Quantum Chromodynamics (QCD), is believed to have existed shortly (a few microseconds) after the Big Bang. Jets, collimated particle sprays originating from the fragmentation of hard-scattered quarks or gluons, serve as valuable probes for studying QGP produced in relativistic heavy ion collisions. As jets experience modifications due to the surrounding medium, so-called jet quenching, concurrently, jets influence the medium.

Introduction to HPC

This workshop is designed to introduce new users to the HPC resources available at Yale and to provide a comprehensive overview of the basic concepts needed to perform computing on the clusters:
accessing the clusters,
navigating a linux interface via bash commands, running interactive and batch jobs,
managing files,
troubleshooting workflows, and more.

Subscribe to RSS - Staff