Coffee/tea and cookies will be in the coffee lounge of 52 Hillhouse starting at 2:00 PM. Bring your own mug if you have!
Galaxy mergers and interactions are responsible for generating bursts of star formation, for changing galactic morphology in dramatic ways, and for triggering single and dual active galactic nuclei. In this talk, I will unveil the very first results from a novel suite of high-resolution galaxy merger simulations, based on the “Feedback In Realistic Environments” (FIRE) model. This model treats energy and momentum-driven feedback from young stars and SN explosions explicitly, which acts directly on resolved star-forming clouds within the ISM. Moreover, this framework relies on a new meshless Lagrangian hydro code, GIZMO, which solves many problems associated with older solvers. Our first work focuses on the spatial localization of star formation. In particular, we confirm results from previous work: galaxy-galaxy interactions enhance nuclear star formation, and suppress it at large galacto-centric radii (Moreno et al. 2015). However, two major differences are found. First, star-formation enhancement and suppression are not as dramatic as in older models. Secondly, the interaction-induced nuclear starburst has a larger spatial extent. These differences are a reflection of the fact that, in our new models, non-axisymmetric gravitational torques are not as effective at driving fuel into the central regions as in older sub-grid based models. This suite of merger simulations is ideal for making predictions for, and interpreting results from, observations by new-generation integral field spectroscopic surveys, such as CALIFA, MaNGA and HECTOR.