Yale Postdoctoral Trainees

WIDG Seminar, Hannah Bossi, Yale University, "Radius-dependent Measurements of Jet Suppression in Heavy-ion Collisions with ALICE"

At sufficiently high temperatures, QCD matter becomes a hot and dense deconfined medium known as the quark-gluon plasma (QGP). The QGP medium can be experimentally recreated through the collisions of relativistic heavy-ions at facilities such as the Large Hadron Collider (LHC). The QGP can be studied with hard probes, which study the result of interactions of hard scattered partons with the QGP. These hard scattered partons fragment and hadronize to form a spray of particles called a jet.

Wright Lab Undergraduate Summer Research Symposium 2021

Please join us for Wright Lab’s 2021 Summer Undergraduate Research Symposium to hear what our undergraduate researchers have been doing this summer.
This event is planned to be held in a hybrid mode (both in-person in WL-216 and on Zoom), according to University policies.
A full agenda is TBA, but our summer researchers include:
Jian Chen (Helen Caines)
Sarah Dickson (Dave Moore)
Marvin Durogene (Keith Baker)
Sophia Getz (Reina Maruyama)
Annie Giman (Reina Maruyama)
Robert Howard (Charlie Baltay)

Inference Project Talk: "No Cause for Concern: Indefinite Causal Ordering as a Tool for Understanding Entanglement"

Understanding the sorts of explanations and inferences that causal processes countenance is of course of great interest to philosophers and physicists (among others). But what can be said about physical processes that fail to exhibit classical causal structure? Indefinite causal ordering among events made possible by quantum correlations has become a fruitful arena of study recently, yielding new insights for quantum computing and communication, approaches to quantum gravity, and even for foundational issues in quantum mechanics.

Inference Project Talk: "No Cause for Concern: Indefinite Causal Ordering as a Tool for Understanding Entanglement"

Understanding the sorts of explanations and inferences that causal processes countenance is of course of great interest to philosophers and physicists (among others). But what can be said about physical processes that fail to exhibit classical causal structure? Indefinite causal ordering among events made possible by quantum correlations has become a fruitful arena of study recently, yielding new insights for quantum computing and communication, approaches to quantum gravity, and even for foundational issues in quantum mechanics.

Subscribe to RSS - Yale Postdoctoral Trainees