Inference Project Virtual Talk: Inference in a Nonconceptual World

Classical models of inference, such as those based on logic, take inference to be *conceptual* – i.e., to involve representations formed of terms, predicates, relation symbols, and the like. Conceptual representation of this sort is assumed to reflect the structure of the world: objects of various types, exemplifying properties, standing in relations, grouped together in sets, etc. These paired roughly algebraic assumptions (one epistemic, the other ontological) form the basis of classical logic and traditional AI (GOFAI).

Dissertation Defense: Kaicheng Li, Yale University, "Searching for the Electron Neutrino Anomaly with the MicroBooNE Experiment Using Wire-Cell Reconstruction"

The Micro Booster Neutrino Experiment (MicroBooNE) is a leading large-scale Liquid Argon Time Projection Chamber (LArTPC) experiment, designed for precision neutrino physics. The main scientific objectives of MicroBooNE include the investigation of the Low Energy Excess (LEE) observed by the MiniBooNE Experiment between 2002-2019 in the Booster Neutrino Beam (BNB) at Fermilab, the measurements of neutrino-argon interactions, and the research and development of LArTPC technology. This thesis focuses on understanding the MiniBooNE LEE through charged-current electron neutrino interactions.

Inference Project Virtual Talk and Conversation, Inference: A Logical-Philosophical Perspective

In this talk, Professor Paseau will describe some of his work on inference within mathematics and more generally. Inferences can be usefully divided into deductive or non-deductive. Formal logic studies deductive inference, the obvious question here being: which formal logic correctly captures it? His view, defended in his recent monograph One True Logic (Oxford UP, co-authored with Owen Griffiths), is that any such logic must be highly infinite. In this Inference Project event, he shall explain what this means and sketch some arguments for it.

WIDG Seminar: Zoltan Varga, Wigner Research Centre for Physics, "Investigating the role of the underlying event in the charm-baryon enhancement”

The factorization hypothesis states that the production cross-section of heavy-flavor hadrons can be calculated as the convolution of three independent terms: the parton distribution function of the colliding hadrons, the production cross sections of the heavy-quarks in the hard partonic process, and finally the fragmentation functions of the heavy-flavor quarks into the given heavy-flavor hadron species. The fragmentation function has been traditionally treated as universal, i.e. independent of the collision systems.

Film Screening of Unconformity and Moderated Conversation with Writer and Director Jonathan DiMaio '09

An ambitious, rock-climbing geology student defies her imperious advisor to travel to the Nevada high desert, where a career-defining discovery and an unexpected friendship with a young cattle rancher force her to make life-altering decisions. Unconformity is the story of a friendship tested in the American West, framed by geology, rock climbing, land rights, exploitation in academia, and the climate crisis.
Join us for a post-film moderated conversation with writer and director Jonathan DiMaio ‘09.

NPA Seminar: Maximiliano Silva-Feaver, University of California, San Diego and The Center for Computational Astrophysics at the Flatiron Institute, “Microwave SQUID Multiplexer Development for the Simons Observatory”

The Simons Observatory is a next generation cosmic microwave background (CMB) observatory sited at Cerro Toco in the Atacama Desert in Chile, scheduled to begin site commissioning in early 2023. It consists of three low angular resolution telescopes dedicated to measuring the degree scale B-mode signal generated from gravitational waves during inflation and one high angular resolution telescope focused on measuring secondary arcminute scale effects.

Dissertation Defense: Ako Jamil, Yale University, “Rare Event Searches in Liquid Xenon with EXO-200 and nEXO”

Noble liquid time projection chambers are ubiquitously used to search for rare events such
as neutrinoless double beta decay or dark matter interactions. A detailed understanding of
light and charge transport in liquid xenon is of the utmost importance when modeling the
performance of these experiments.
In this talk I will present the design and physics reach of the proposed nEXO experiment,

NPA Seminar, Simone Mazza, UCSC, "4D tracking technologies and R&D"

Precision Timing information at the level of 10-30ps is a game changer for detectors at future collider experiments. For example, the ability to assign a timestamp with 30ps precision to particle tracks will mitigate the impact of pileup at the High-Luminosity LHC (HL-LHC). With a time spread of the beam spot of approximately 180ps, a track time resolution of 30ps allows for a factor of 6 reduction in pileup. HL-LHC will only be the first in HEP experiments to exploit the concept of 4D tracking using time as one of the parameters.

Subscribe to RSS - Alumni