Graduate And Professional

WIDG Seminar: Benjamin Siegel, Yale, “Searching for Dark Matter via a Levitated Microsphere Array”

Optically levitated masses have many applications in precision measurement, including tests of the neutrality of matter, millicharged particle searches, and dark matter detection. For such searches in which sensitivities scale with the mass or number of neutrons in the test particle, using larger, heavier spheres extends their reach. To capitalize upon this, we have used spheres with diameters on the micrometer scale in past experiments. Further improvements in sensitivity to rare events and rejection of correlated noise sources can be achieved using an array of levitated microspheres.

NPA Seminar: Jamie Karthein, MIT, “Fluctuations of Conserved Charges for QCD Phase Diagram Characterization”

Fluctuations provide a powerful tool for elucidating the nature of strongly-interacting matter in the QCD phase diagram. In heavy-ion-collision systems, the net-particle number fluctuations are captured at the moment of chemical freeze-out. Studies of the chemical freeze-out via susceptibilities from Lattice QCD and the Hadron Resonance Gas model contribute to the characterization of the transition region of the QCD phase diagram.

WIDG Seminar: Samantha Pagan, Yale, “A Search for Solar Axions with CUORE”

Abstract: The Cryogenic Underground Observatory for Rare Events (CUORE) is an experiment searching for neutrinoless double-beta in Te-130. An observation of this ultra-rare decay would determine that neutrinos are Majorana particles. As an extremely low background experiment with high energy resolution and exposure, CUORE is sensitive to other rare-event searches such as for solar axions and Axion Like Particles (ALPs). Axions are a well-motivated dark matter candidate that could also provide a solution for the QCD Strong CP problem.

NPA Seminar: Dennis Perepelitsa, University of Colorado Boulder, “The Long Range Plan for Nuclear Science: A Perspective on Hot QCD Priorities”

Abstract: The U.S. nuclear physics community is at the beginning of its Long Range Plan for Nuclear Science process, taking place every 6-8 years. The goal of the planning process is to identify the priorities for the field going forward, including its scientific direction and investments in major detectors or facilities.

NPA Seminar: Shirley Li, UC Irvine/Fermilab, “Neutrino-Nucleus Scattering in Neutrino Oscillation Experiments”

: The Deep Underground Neutrino Experiment (DUNE) will be the leading next-generation particle project in the US. It aims to measure CP violation in the neutrino sector and determine the mass ordering of neutrinos. These measurements are straightforward conceptually but challenging practically. One outstanding issue is the modeling of GeV neutrino-nucleus interaction. With a lack of a proper theoretical framework, it is not only difficult to simulate neutrino events in the detector accurately but also difficult to assess its impact on the physics measurements.

NPA Seminar: Paolo Parotto, Penn State, “Finite density equation of state from lattice QCD: recent results from an alternative expansion”

Exploring the Quantum Chromodynamics (QCD) phase diagram has been the goal of extraordinary research efforts from theory and experiment alike. Knowledge of the QCD equation of state at finite temperature and density is crucial to support simulations of heavy-ion collisions. Although lattice simulations are the main tool of investigation for QCD thermodynamics, the determination of the equation of state of QCD at finite chemical potential from direct simulations is hindered by the fermion sign problem.

NPA Seminar: Maximiliano Silva-Feaver, University of California, San Diego and The Center for Computational Astrophysics at the Flatiron Institute, “Microwave SQUID Multiplexer Development for the Simons Observatory”

The Simons Observatory is a next generation cosmic microwave background (CMB) observatory sited at Cerro Toco in the Atacama Desert in Chile, scheduled to begin site commissioning in early 2023. It consists of three low angular resolution telescopes dedicated to measuring the degree scale B-mode signal generated from gravitational waves during inflation and one high angular resolution telescope focused on measuring secondary arcminute scale effects.

NPA Seminar: Chelsea Bartram, SLAC, "A Bird's Eye View of Dark Matter"

Evidence for the existence of dark matter abounds in the study of astrophysical phenomena. Nevertheless, a dark matter candidate has yet to be explicitly identified. Direct detection of such a particle would point to physics beyond the Standard Model. The Axion Dark Matter eXperiment (ADMX) is searching for a wave-like dark matter candidate in the form of an axion. Such a candidate could resolve not only the dark matter problem, but also the strong CP problem.

NPA Seminar: Anupam Mazumdar, University of Groningen, "Entanglement Witness test for Quantum Gravity in a lab"

Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. Along this line, a prime question is to find whether gravity is a quantum entity subject to the rules of quantum mechanics. It is fair to say that there are no feasible ideas yet to test the quantum coherent behaviour of gravity directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator.

Dissertation Defense: Ako Jamil, Yale University, “Rare Event Searches in Liquid Xenon with EXO-200 and nEXO”

Noble liquid time projection chambers are ubiquitously used to search for rare events such
as neutrinoless double beta decay or dark matter interactions. A detailed understanding of
light and charge transport in liquid xenon is of the utmost importance when modeling the
performance of these experiments.
In this talk I will present the design and physics reach of the proposed nEXO experiment,

Subscribe to RSS - Graduate And Professional