Peter Schiffer, how nanomagnets offer clues to how avalanches work

November 16, 2021

From the Yale School of Engineering and Applied Science News

The behavior of avalanches has generated interest among physicists for the insights that they can provide about many other systems, not least of which is how snow falls down a mountainside. To that end, a team of researchers studied microscopic arrays of nanomagnets that provide the first experimental demonstration of a classic theoretical model, known as the “one-dimensional random field Ising model.” The results were published today in Physical Review Letters

For the study, researchers set up the arrays of nanomagnets in the lab of Peter Schiffer, the Frederick W. Beinecke Professor of Applied Physics, who led the experiment. The nanomagnets, which are a few millionths of an inch in dimension, interact with each other just like two refrigerator magnets put close together. The array is first initialized so that, in alternating rows, half of the nanomagnets had the north pole pointing up and half had the north pole pointing down.   

Click below for full story.
 
External link: