Undergraduate

YPPDO Seminar: Ellie Hadjiyska Schmelzer, Collins Aerospace, "Elliptical Career Paths"

Many of us expect to follow linear career paths. However, sometimes we cannot predict our growth and change, leading us to reevaluate our career trajectory. Course corrections can alter our linear paths and create parallel, perpendicular, or even elliptical career paths. In this talk, I will discuss the surprising twists and turns one may encounter when navigating their professional growth.

ACCESS: Free HPC Resources Available to Researchers

The session will provide an overview of free ACCESS resources, outline the application process for various resource allocations, as well as reporting requirements for successful applications.

If you are a graduate student, post-doc or professor experiencing restrictions via CPU hour limits, gpu access, and/or other resource-related limitations then ACCESS may be the solution for you.

Parallel Programming with Python

This workshop introduces parallel programming concepts and demonstrates their implementation with Python. We will discuss parallel concepts, classes of parallel programs, Python’s implementation of parallel workflows, and showcase several toolkits for CPU and GPU-based parallel programming in Python. Additionally, we will discuss leveraging cluster-infrastructure for large parallel work via Slurm Job Arrays.

WIDG Seminar: Sophia Hollick, Yale, "COSINE-100 and ANAIS-112 Search for WIMPs"

This prospectus carries the goal of testing the DAMA/LIBRA (DL) dark matter claim by combining two collaborations who have set forth to reproduce the DL annual modulation signature, COSINE-100 and ANAIS-112. COSINE-100’s recent modulation results support both the no modulation case and the DL modulation case. ANAIS- 112 excludes DL to 2σ. A combination of the two experiments would allow for a sensitive search from opposite sides of the world, notably, Spain and Korea.

WIDG Seminar: Mark Gonzalez, Yale, "Detectorology and its Phenomenological Applications"

Well-defined operators which are capable of describing measurements made at future null infinity in collider experiments are naturally of phenomenological interest, but they are also of great formal interest. Here we discuss the properties of these so called asymptotic detector operators, including both their formal construction in terms of light-ray operators in a conformal field theory, as well as their utility in jet substructure phenomenology.

Dissertation Defense: Tong Liu, Yale University, "Inclusive Hadron Yield Analysis in Small and Mid-sized Collision Systems at sqrt(s_NN)=200 GeV at STAR"

At extremely high temperature and energy density, the quarks and gluons form a novel state of matter called the Quark-Gluon Plasma (QGP). The QGP has been widely studied via relativistic heavy ion collisions in large collision systems like Au+Au and Pb+Pb. However, whether the QGP exists in small systems like p+Au, and the dependence of QGP production on the collision system size are still open questions. One way to study the QGP properties is by using proxies of high energy partons, which are created in the initial stages of the collisions, and fragment into hadrons in the final state.

NPA Seminar: Kelly Stifter, SLAC, "Leveraging quantum sensors to shine new light on searches for low-mass dark matter"

While dark matter accounts for approximately 85% of the mass in the universe, its physical nature remains one of the most pressing open questions in the field of physics. Three decades of experiments have been searching for dark matter interactions over a wide range of candidate dark matter masses and all have come up empty-handed. Nevertheless, there remain large swaths of unexplored, well-motivated particle dark matter models that are currently inaccessible through existing detector technologies.

NPA Seminar: Scott Kravitz, University of Texas at Austin, "Dark matter detection and beyond with crystal xenon"

I will present the crystalline xenon time projection chamber (TPC), a promising novel technology for next-generation dark matter searches. Initial tests have established that it maintains many of the benefits of the liquid xenon TPC while also effectively excluding radon, the dominant background in currently-running xenon dark matter experiments such as LZ. This offers the potential for greatly improved sensitivity to dark matter through a crystal xenon upgrade to an existing experiment.

NPA Seminar: Yoni Kahn, UIUC, "Dark Matter Meets Condensed Matter"

As the gravitational evidence accumulates inexorably that dark matter comprises the vast majority of the mass of the universe, the particle nature of dark matter remains a mystery. New laboratory experiments are being commissioned to probe sub-GeV dark matter, but the signatures in these detectors rely crucially on the condensed matter properties of the detector material. Similarly, detecting the couplings of axions to matter requires considering collective modes in materials.

Subscribe to RSS - Undergraduate